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Part I

Category Theory





1 In this subsection, we ignore all the
set-theoretical problems, by throwing
some axioms in a vacant logical space.

2 This indeed is a very simple example
of the diagram, defined below, consists
of two objects dom f , cod f and one
arrow f .

3 The equivalence relation on arrows
depends on the context, for example,
the associativity defined in metacate-
gory below.

4 Because every identity arrow corre-
sponds to every object, we can define
the category by only using morphisms.
5 The diagrammatic description of
composition is the following.

a b

c

f

g◦ f
g

6 The diagrammatic description of unit
law(left) and composition(right) is the
following.

a b

a b

f

1a
f ◦1a

1b◦ f
1b

f

a b

c d

f

f ◦(g◦h)=( f ◦g)◦h

g◦ f
g

h◦g

h

Chapter 1

Basic concepts of category theory

Ah, that will never prove it.

— Neru, Abstract Nonsense

1.1
Metacategory1

Definition 1.1.1. A metagraph consists of objects and arrows,
with two operations taking each arrow to object:

• Domain, which assigns to each arrow f an object dom f ;
• Codomain, which assigns to each arrow f an object cod f .

If so, we write f : dom f → cod f , or dom f
f−→ cod f . 2

The visualization of a metagraph, by using the (possibly labelled)
objects and arrows, is called the diagram of the metagraph. We call
the diagram commutes if any two (directed) routes connecting two
objects are equivalent3.

Definition 1.1.2. A metacategory is a metagraph with two oper-
ations:

• Identity, which assigns to each object a an arrow 1a : a→ a4;
• Composition, which assigns to each pair 〈g, f 〉 of arrows with

dom g = cod f an arrow g ◦ f : dom f → cod g.5

These operations satisfies the two following axioms:

• Unit law: for all arrows f : a→ b, 1b ◦ f = f = f ◦ 1a.

• Association law: for all arrows a
f−→ b

g−→ c h−→ d, the following
equality holds.6

k ◦ (g ◦ f ) = (k ◦ g) ◦ f (1.1)

We often write g ◦ f as g f .
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7 Because of the proper class problem,
or Russel’s paradox, we need to
restrict down the number of targets
setwisely. First four statements shows
that all the Zermelo-Fraenkel(ZF)
axiomatic operations works in U, the
fifth statement allows the structure
of well-known arithmetic, and the
last statement allows the structure of
well-known functions.

8 If the universe U is already given,
then we simply say U-set a set and
U-small set a small set.

9 Thus we may consider the category
as the metacategory which can be
treated under set theory, or more
explicitly, a universe.

Example 1.1.3.

1. The metacategory of sets is a metcategory whose objects are all
sets and arrows are all functions, with usual identity function
and composition between two functions.

2. The metacategory of groups is a metacategory wose objects
are all groups and arrows are all homomorphisms, with usual
identity morphism and composition between two morphisms.

3. There are also many other metacategories: rings with ring ho-
momorphisms, fields with field homomorphisms, topological
spaces with continuous maps, etc.

1.2
Category

Definition 1.2.1. A universe is a set U with the following prop-
erties:7

1. ∅ ∈ U (empty set rule);
2. x ∈ u ∈ U implies x ∈ U (transitive rule);
3. u ∈ U implies {u} ∈ U (singleton set rule);
4. x ∈ U implies P(x) ∈ U (power set rule);
5. For I ∈ U and {xα}α∈I , ∪α∈I xα ∈ U (union rule);
6. ω ∈ U, where ω is the set of all finite ordinals (infinite set rule).

We call a set u a U-set if u ∈ U, and a set u a U-small set if u is
isomorphic to a U-set.8

Proposition 1.2.2. Let U be a universe.

1. u ∈ U implies ∪x∈ux ∈ U.
2. u ⊂ v ∈ U implies u ∈ U.
3. u, v ∈ U implies u× v ∈ U.
4. I ∈ U and ui ∈ U for all i ∈ I implies ∏i∈I ui ∈ U.

Proof. 1. From the union rule, take I as u, and we take {xα}α∈I as u
itself. Then ∪x∈ux ∈ U.

2. u ⊂ v implies u ∈ P(v) and because v ∈ U, by power rule,
P(v) ∈ U, and by transition rule, u ∈ U.

3. Because u× v ∈ P(P(P(u ∪ v))), u× v ∈ U.
4. Because ∏i∈I ui ∈ P(P(I ×∪i∈Iui), ∏i∈I ui ∈ U.

Definition 1.2.3. A graph is a set of objects and a set of arrows,
with two functions dom, cod from morphisms to objects. We call the
arrows in category as morphisms.

A category C is a graph which is also a metacategory, that is, it
has two additional functions, identity and composition, all of those
satisfies the condition of metacategory.9 We write obC as the set of
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10 From now, we will not mention what
universe we are working on.

11 Indeed, we only need small obC
rather then local smallness, because
the smallness of morC gives the
smallness of all hom(a, b).

2020.12.12.

objects in C, morC as the set of morphisms in C, and homC(a, b) as
the set of morphisms in C with domain a and codomain b.

We frequently write a ∈ obC as a ∈ C and f ∈ homC(a, b) as
f ∈ hom(a, b), f ∈ C(a, b) or f ∈ C, when all the ignored elements
are assumed to be known in the context.

Definition 1.2.4. Fix a universe U.10

If C is a category with small obC and hom(a, b) ∈ C are small for
all a, b ∈ C, then we call it a locally small category.

We call C a small category if C is locally small category11 and
morC is small.

Example 1.2.5.

1. Set is the category whose objects are sets and morphisms are
functions. This is same for Group with group homomorphisms,
Meas with measurable functions, Top with continuous functions,
Man with continuous functions on manifold, and Poset with
order-preserving functions on Partially ordered set, and so on.

2. Consider a group G. Then the category BG is an one-object cate-
gory defined by G, where the morphisms are the elements of G.
Here, the composition of morphisms are defined by the multipli-
cation of group elements.

3. Consider a poset P. Then the category P is a category with its
elements as objects and f : x → y as morphisms for all x ≤ y.

4. The category 0 is a category with no object and no morphism.
5. The category 1 is a category with one object and one morphism,

the identity.
6. The category 2 is a category with two objects, two identities, and

one morphism between them.

1.3
Morphism

Definition 1.3.1. Consider a morphism f ∈ C(X, Y). Then f
is called an isomorphism if f g = 1Y and g f = 1X , and call f an
inverse of g. If so, we say X, Y are isomorphic, and write X ' Y.

If a morphism f ∈ C satisfies dom f = cod f , then we call it
endomorphism.

If an endomorphism is also an isomorphism, then we call it
automorphism.

Example 1.3.2.

1. For the category Set, the isomorphisms are bijections. Similarly,
we have group isomorphisms for Group, measurable bijections
for Meas, homeomorphisms for Top and Man, and order isomor-
phisms for Pos.

2. For a group G, every morphisms in BG are automorphisms.
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12 The following two diagrams show
the post(left) and pre(right) composi-
tion.

x y

c

f

g f g

f∗

x y

c

f

h f h
f∗

13 From now, we consider a category
C as a locally small category, unless
mentioned.

14 Here, the almost similarness, which
has a proof with only opposite arrows,
is called the dual theorem. This will be
discussed in the Section 1.7.

3. For a poset P, only identities are isomorphisms, hence automor-
phisms.

Lemma 1.3.3. For each morphism f ∈ C, there is at most one inverse of
f .

Proof. Suppose g, h are inverses of f . Then g f h = (g f )h = h, but
also g f h = g( f h) = g, hence g = h.

Definition 1.3.4. Let C be a locally small category, and f : x →
y ∈ C be a morphism. Choose an object c.12

1. The post-composition f∗ : C(c, x) → C(c, y) is a function taking
g : c→ x to f∗(g) = f g : c→ y.

2. The pre-composition f ∗ : C(y, c) → C(x, c) is a function taking
h : y→ c to h f : x → c.

Lemma 1.3.5. Let f : x → y ∈ C13. Then the followings are equivalent.

1. f is an isomorphism in C.
2. For any object c ∈ C, the post-composition f∗ : C(c, x) → C(c, y) is a

bijection.
3. For any object c ∈ C, the pre-composition f ∗ : C(y, c) → C(x, c) is a

bijection.

Proof.

(1⇒ 2). Because f is an isomorphism, we have its inverse g : y →
x. Thus for all h ∈ C(c, x),

g∗ f∗(h) = g f h = h (1.2)

hence g∗ f∗ = 1C(c,x) Similarly, for all k ∈ C(c, y),

f∗g∗(k) = f gk = k (1.3)

hence f∗g∗ = 1C(c,y).
(2⇒ 1). Because f∗ is a bijection, we have g := f−1

∗ (1y). By defini-
tion f g = 1y. Now because f∗(g f ) = f g f = f = f∗(1x) and f∗ is
bijective, g f = 1x.

(1⇔ 3). This case can be proven by almost similar14 way above.

Definition 1.3.6. Let f : x → y ∈ C be a morphism.

1. We call f a monomorphism, or in short monic, if for any mor-
phisms h, k : w→ x, f h = f k implies h = k.
To say f is monic, we write f : x� y.

2. We call f an epimorphism, or in short epi, if for any morphisms
p, q : y→ z, p f = q f implies p = q.
To say f is epi, we write f : x� y.
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15 We will consider the surjective
pre- and post-composition cases in
Theorem 1.3.12.

16 Again, the almost similarness im-
plies the dual theorem. From now we
will skip all the dual theorem proofs.

17 This is NOT the dual statement,
because the space Setop does not have
same structure with Set. If we consider
the statement f is surjective if and only
if f has its right inverse, then its dual
statement says f is injective if and only
if f has its left inverse, so we can use
the duality property. However because
the first statement is equivalent with
Axiom of Choice, it is an overkill.
18 Notice that we can consider element
because X is a set. In general, even if a
category C has exactly same structure
with Set, we may cannot choose an
element in any object of C, because it
is not necessary to define the category.
However we may choose a ’one-
set like’ object • in C, and consider
C(•, X) as the set of X, defining
elements categorically. We will later
discuss when we can find such ’one-
set like’ object, or also called as, the
terminal object. The dual concept of it
is the initial object.

19 This example shows that monic and
epi does not implies isomorphic.

Proposition 1.3.7. Consider a morphism f ∈ C.15

1. f is monic if and only if f∗ : C(c, x)→ (c, y) is injective for all c ∈ C.
2. f is epi if and only if f ∗ : C(y, c)→ C(x, c) is injective for all c ∈ C.

Proof.

1.

(⇒). For any c ∈ C and h, k ∈ C(c, x), f h = f k implies h = k. Now
f∗(h) = f∗(k) is equivalent with f h = f k.

(⇐). Choose c ∈ C. Because f∗ : C(c, x) → C(c, y) is injective, for
all h, k ∈ C(c, x), f∗(h) = f∗(k) implies h = k. Now f h = f k is
equivalent with f∗(h) = f∗(k).

2. The proof can be done by almost similar argument with above.16

Proposition 1.3.8. Consider the function f ∈ Set(X, Y).

1. f is monic if and only if f is injective.
2. f is epi if and only if f is surjecetive.17

Proof.

1. For any x ∈ X, define 1x : {•} → X with 1x(•) = x.18 Then
f∗(1x) = f∗(1x′) if and only if f (x) = f (x′). Because 1x = 1x′ if
and only if x = x′, f∗ is injective if and only if f is injective. By
the proposition 1.3.7, the given statement holds.

2.

(⇒) Take y ∈ Y − f (X) and define h : Y → {0, 1} as h(Y) = 0
and k : Y → {0, 1} as k−1(1) = {y}. Then h f = k f but h 6= k,
contradiction, thus Y = f (X).

(⇐) Consider h, k : Y → Z with h f = k f . Because f is surjective,
k(y) = k f ( f−1(y)) = h f ( f−1(y)) = h(y) for all y ∈ Y. Hence
k = h.

Example 1.3.9. 19

Consider the inclusion mapping i : Z ↪→ Q in Ring. Then i is
monic and epi, but not isomorphic.

Indeed, for h, k : R → Z, ih = ik implies ih(r) = ik(r) thus
h(r) = k(r) for all r ∈ R, hence h = k and i is Monic.

Also, for h, k : Q → R, if hi = ki but h 6= k then we have q ∈ Q

such that h(q) 6= k(q). Because q /∈ Z, q = r/p for some relatively
prime integers r, p. Then h(r) = k(r) thus p · h(q) 6= p · k(q),
contradiction.

Finally, consider the nontrivial ring homomorphism f : Q → Z.
Then f (q) = n 6= 0 for some q ∈ Q, with n = 2am with odd
m. Then f (q/2a+1) = m/2 /∈ N, contradiction. Hence i is not an
isomorphism.
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20 The concepts, split monomorphism
and split epimorphism, are dual to
each other.

21 Compare this with Proposition 1.3.7.

Definition 1.3.10. Let s ∈ C(x, y) and r ∈ C(y, z) such that
rs = 1x.

1. We call s a section, split monomorphism, or right inverse of r.
2. We call r a retraction, split epimorphism, or left inverse of s.20

Proposition 1.3.11. Let f ∈ C(x, y).

1. If f is a split monic, then f is monic.
2. If f is a split epi, then f is epi.

Proof.

1. We have g ∈ C(y, x) such that g f = 1x. Now if f h = f k for some
h, k ∈ C(w, x), then h = g f h = g f k = k.

2. Similar as above.

Theorem 1.3.12. 21 Let f ∈ C(x, y).

1. f is a split epimorphism if and only if f∗ : C(c, x) → C(c, y) is
surjective.

2. f is a split monomorphism if and only if f ∗ : C(y, c) → C(x, c) is
surjective.

Proof.

1.

(⇒). Because f is a split epimorphism, we have g ∈ C(y, x) such
that f g = 1y. Now consider k ∈ C(c, y). Then gh ∈ C(c, x)
satisfies f∗(gh) = h, thus f∗ is surjective.

(⇐). We have g ∈ f−1
∗ (1y), which gives f g = 1y.

2. Similar as above.

Corollary 1.3.13. Let f ∈ C(x, y) be a morphism. Then the follow-
ings are equivalent.

1. f is isomorphic.
2. f is monic and split epi.
3. f is epi and split monic.

Proof.

(1⇔ 2). By Proposition 1.3.7, f is monic if and only if f∗ is in-
jective. By Theorem 1.3.12, f is split epi if and only if f ∗ is sur-
jective. By Lemma 1.3.5, f is isomorphic if and only if f ∗ is bi-
jective. Because f ∗ is bijective if and only if f ∗ is injective and
surjective, the statement is true.

(1⇔ 3). Similar as above.
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22 The number of statement shows the
dual relation: (1↔ 1’) and (2↔ 2’).

2020.12.14.

23 We can draw the data of functor as
following.

c c′

F(c) F(c′)

f

F F

F( f )

F

24 The composition rule can be drawn
as following.

c c′ c′′

F(c) F(c′) F(c′′)

f

F F

g

F

F( f ) F(g)

F F

25 The concept "forgetful functor" does
not have any precise definition. In-
deed, mostly we use this terminology
from a set-like category to Set, which
is explained below.

Lemma 1.3.14. Let f ∈ C(x, y) and g ∈ C(y, z).22

1. If f : x� y and g : y� z are monic, then g f : x� z is monic.
2. If f : x → y and g : y→ z gives monic composition g f : x� z, then f

is monic.
1’. If f : x� y and g : y� z are epi, then g f : x� z is epi.
2’. If f : x → y and g : y → z gives epi composition g f : x� z, then g is

epi.

Proof.

1. For h, k ∈ C(w, x), because g is monic, g f h = g f k implies f h =

f k, and because f is monic, h = k.
2. For h, k ∈ C(w, x), suppose that f h = f k. Then g f h = g f k thus

h = k.
1’. Similar as 1.
2’. Similar as 2.

1.4
Functor

Definition 1.4.1. Let C,D be categories. A functor F : C → D

consists of the following data:23

• An object F(c) ∈ D for each object c ∈ C;
• A morphism F( f ) : F(c) → F(c′) ∈ D for each morphism

f : c→ c′ ∈ C.

These data satisfies the following functoriality axioms:24

• For any composable morphism pair f , g ∈ C, F(g)F( f ) = F(g f );
• For each object c ∈ C, F(1c) = 1F(c).

For any two functors F : C → D and G : D → E, we have a
composite functor G ◦ F : C → E, also written as GF, defined as
GF(c) = G(F(c)) and GF( f ) = G(F( f )).

Example 1.4.2.

1. The forgetful functor is the functor F : C → D, which "forgets"
some property of category C25.
For example, let C be one of the categories
Group,Ring,ModR,Field,Meas,Top,Poset, or any other set-based
category. The forgetful functor F takes c ∈ obC to the set c, and
takes f ∈ morC to the function f . In each cases, we are forgetting
certain properties which characterize the category.
Considering Set as the base category, we have seen the "fully"
forgetful functors. We can also define the "partial" forgetful func-
tors. For example:
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26 The reason why we write these
functors separately is, indeed, we
may consider these functors as a
functor from an opposite category
to a category. The opposite category,
closely related with the duality, will be
treated later.
27 Here, to us, it will be easier to define
the directions of arrow oppositely in
Vect

op
k . This direction change under

? indeed shows the ’contravarient
property’ of ?, so will be called the
contravariant functor. On the other
hand, the functors above are defined
covariently, thus they are called the
covariant functor.
28 Here we can see that we are consid-
ering op as the functor acting on C,
giving reversed direction of arrow. We
will explicitly define this concept in
Section 1.7.

(a) The functor F : Ring → CRing from ring category to commuta-
tive ring category forgetting commutator;

(b) The functor F : ModR → Ab from R-module category to
abelian group category forgetting Modular properties;

(c) The functor CRing → Ab from commutative ring category to
abelian group category forgetting multiplicative properties;

and so on.
2. In topology, consider a functor π1 : Top∗ → Group from point-

fixed topological set category to group category, taking (X, x) to
its fundamental group π1(X, x) and f : (X, x) → π1(Y, y) to the
induced homomorphism f∗ : π1(X, x)→ π1(Y, y).

3. Consider the functors Zn, Bn, Hn : ChR → ModR from R-chain
complex category to R-module category. Here the n-cycle is
defined as Zn(C•) = ker(d : Cn → Cn−1), the n-boundary
as Bn(C•) = Im(d : Cn+1 → Cn), and the n-th homology as
Hn(C•) = Zn(C•)/Bn(C•).

4. Consider the functor F : Set → Group. Here F(X) is the free
group generated by the set X. This functor, indeed, satisfies some
universal property, which we will discuss later.

Example 1.4.3. 26

1. Consider the functor ? : Vectk → Vect
op
k , taking a vector space V

to its dual space V∗ = hom(V, k). Then the linear map φ : V →
W gives the arrow φ? : V∗ → W∗, which exists when we have a
dual map φ∗ : W∗ → V∗ with φ∗( f : W → k) = f ◦ φ.27

2. Consider the functor Spec : CRingop → Top, taking a com-
mutative ring R to the set of prime ideals SpecR with Zariski
topology. Then the ring homomorphism φ : R → S gives the
arrow Specφ : Spec(S)→ Spec(R), which exists when we have an
inverse map φ−1 : Spec(S)→ Spec(R).

3. Consider the functor F : Cop → Set for some arbitrary category
C28 For example, consider a category O(X) for some topological
space X, which is the poset category of open subsets of X. If
V ⊂ U, we have resV,U : F(U) → F(V). We call such functor F a
presheaf.

4. Consider the functor F : O(X) → Ring, defined as F(X) be the
bounded functions on U and F(V ⊂ U) be the restriction func-
tion resV,U : F(U) → F(V) taking f to f |V . By taking forgetful
functor, we can consider F as a presheaf. If, furthermore, sup-
pose that for all V, W ⊂ U and g ∈ F(V), h ∈ F(W) satisfying
g|V∩W = h|V∩W , we have f ∈ F(U) such that f |V = g and
f |W = h. Then we call F a sheaf.

Lemma 1.4.4. Functors preserve split monics, split epis, and isomor-
phisms.
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29 This example shows that the functors
need not preserve monics and epis.

30 This example shows that the functors
need not reflect isomorphisms.

31 Notice that they do not need to be
exactly same.

32 This also holds on the fully faithful
functor, but not exactly. Indeed, any
fully faithful functor is equivalent to
some full embedding functor. We will
discuss this after when we discuss the
equivalence between functors.

Proof. Let F : C → D be a functor and f ∈ C(x, y) be split monic.
Then we have

F(g)F( f ) = 1F(x) (1.4)

thus F( f ) is a split monic.
Split epi case can be done similarly.
From Corollary 1.3.13, f is isomorphic if and only if f is split

monic and split epi. Thus functor preserve isomorphisms.

Example 1.4.5. 29 Consider a category 2, consists of two objects
and one arrow • → ◦(except identities). Then the arrow is monic
and epi.

Consider a functor F : (• → ◦) → ModZ, defined as F(•) =

F(◦) = Z and F(• → ◦) : Z → Z becomes a trivial map n 7→ 0.
Then F(• → ◦) is neither monic nor epi.

Example 1.4.6. 30 Let C be a category with two objects and one
arrow(except identity), • → ◦. Let C be a category with two objects
and two arrows(except identity), •� ◦.

Let F : C → D be a functor taking objects and arrows to itself.
Then F(• → ◦) is an isomorphism, but • → ◦ is not.

Definition 1.4.7. A functor F : C→ D is conservative if it reflects
isomorphisms. That is, For all morphisms f ∈ C(x, y), if F( f ) is
isomorphic, then f is isomorphic.

Definition 1.4.8. A subcategory of C is a collection of some of
the objects and some of the arrows of C, which is itself a category.

Let D be a subcategory of C. The inclusion map D → C, taking
each object and each arrow in D to itself in C, is called the inclusion
functor.

Definition 1.4.9. Let F : C→ D be a functor.

• We say F is a full if for each objects x, y ∈ C, F : C(x, y) →
D(F(x), F(y)) is surjective.

• We say F is a faithful if for each objects x, y ∈ C, F : C(x, y) →
D(F(x), F(y)) is injective.

• We say F is essentially surjective on objects if for every object
d ∈ D, there is an object c ∈ C such that F(c) ' d.31

• We say F is an embedding if it is faithful functor and F : obC →
obD is injective.

• We say F is fully faithful if it is full and faithful.
• We say F is full embedding of C into D if it is full and embed-

ding. If so, then we say C is a Full subcategory of D.

Proposition 1.4.10. The image of full embedding functor F : C → D

is a subcategory of D.32
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Proof. We only need to check that F(C) is indeed a category. The
associativity, injectivity of objects and morphisms, and existence of
identity holds naturally. For the composition rule, because C(x, y) '
C(F(x), F(y)) for all objects x, y ∈ C, there always exists F(g)F( f ) =
F(g f ) for all composable f , g.

Example 1.4.11.

1. The forgetful functor Group → Set is faithful, but not full and
essentially surjective on objects.

2. Consider the functor from BZ/4 → BZ/2, which is the nontriv-
ial homomorphism. This functor is full and essentially surjective
on objects, but not faithful.

3. Consider the category C with four objects {a, b, c, d} and two
nontrivial morphisms a → b, c → d. Also consider the category
D with three objects {x, y, z} and three nontrivial morphisms
x → y→ z, x → z.
Define a functor F as following. On objects, F(a) = x, F(b) =

F(c) = y, F(d) = z. All morphisms are defined accordingly.
Then F is embedding, but not full. Indeed, image has x → y → z,
but does not have their composition x → z. Thus the image of F
does not give a subcategory of D.

Definition 1.4.12. Let F : C → D and G : D → C be functors. If
FG = 1D and GF = 1C, then we call F, G as the isomorphisms of
categories, and we say C,D are isomorphic categories.

Example 1.4.13.

1. For a group G, the functor −1 : BG → BGop, taking g → g−1, is
isomorphic.

2. Let E/F be a finite Galois extension and G := Aut(E/F) the
Galois group.
Define orbit category OG, whose objects are cosets G/H and
morphisms f : G/H → G/K are G-equivariant maps, satisfying
g′ f (gH) = f (g′gH). Indeed every G-equivariant map can be
represented as gH 7→ gγK, for some γ ∈ G with γ−1Hγ ⊂ K.
Define the category FieldE

F , whose objects are intermediate fields
E/K/F, and morphisms f : K → L are the field homomorphisms
fixing F.
Now we define Φ : Oop

G → FieldE
F , taking objects G/H to the H-

fixed subfield, and morphisms G/H → G/K induced by γ to the
field homomorphism x 7→ γx from K-fixed subfield to H-fixed
subfield.
The fundamental theorem of Galois theory then says Φ is iso-
morphic.
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33 This example shows that the iso-
morphisms of categories are not very
useful if we want to compare the struc-
ture between two categories. Hence we
use the concept natural transforma-
tion, which will be discussed in the
Section 1.5.

34 This relation can be drawn as follow-
ing.

F(c) G(c)

F(c′) G(c′)

αc

F( f ) G( f )

αc′

35 This relation can be drawn as follow-
ing.

V V∗∗

W W∗∗
φ

evV

φ∗∗

evW

36 This relation can be drawn as follow-
ing.

GLn(R) R×

GLn(S) S×
GLn(φ)

detR

φ×

detS

2020.12.21.

Example 1.4.14. 33 Consider a category Set∂, whose objects are
sets and morphisms are partial functions: f : X → Y is a function
from X′ ⊂ X to Y.

Consider the category Set∗, whose objects are pointed sets
(X, x), the sets X with a freely-added basepoint x ∈ X, and mor-
phisms are the functions.

Take the functor (−)+ : Set∂ → Set∗, which sends X to the
pointed set X+ := (X ∪ {X}, {X}), and the partial function X → Y
to the pointed function f+ : X+ → Y+, where all the elements out of
the domain of function f maps to the basepoint of Y+.

Take the functor U : Set∗ → Set∂, which sends X+ to the set X,
and the pointed function f+ : X+ → Y+ to the partial function f on
X.

Because of the construction, U(−)+ = 1
Set∂ . However, (U−)+

sends (X, x) to (X − {x} ∪ {X − {x}}, X − {x}). This is isomorphic
but not identical, hence (U−)+ 6= 1Set∗ , and so U and (−)+ are not
the isomorphisms.

1.5
Natural Transformations

Definition 1.5.1. Consider functors F, G : C → D. Then a natural
transformation α : F ⇒ G consists of following data:

• For every objects c ∈ C, we have a morphism αc : F(c) → G(c) in
D.

These morphisms must satisfy the following statement:

• For any morphism f : c→ c′ in C, G( f )αc = αc′F( f ).34

Example 1.5.2. 1. Consider the vector space V over the field k.
Then the map evV : V → V∗∗, taking v ∈ V to evV(v) : V∗ → k,
are the components of a natural transformation from 1Vectk

to the
double dual functor ∗∗.35

2. Consider the finite vector space V over the field k. Then the iden-
tity functor and dual ∗-functor are not natural transformations,
because the identity functor does not changes the direction of
arrow, but the dual functor does.

3. Consider a category of commutative ring cRing and a category of
group Group. From a commutative ring R, we may consider the
general linear group GLn(R) and the group of units R×. Thus,
GLn and (−)× are functors from cRing to Group.
Now consider the determinant detR : GLn(R) → R×. Then for
any ring homomorphism φ : R → S, we have detS (GLn(φ)) =

φ× ◦detR,36 thus det : GLn ⇒ (−)× is the natural transformation.

1.6
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37 These relations can be drawn as
following.

c GF(c)

c′ GF(c′)

ηc

f GF( f )
ηc′

d FG(d)

d′ FG(d)

εd

g FG(g)
εd′

38 This relation can be drawn as follow-
ing.

c GF(c) c

c′ GF(c′) c′

ηc

f GF( f ) GF(g) g

ηc

ηc′ ηc′

39 Because we use the axiom of choice
to construct the inverse functor G of
F, if we are considering the categories
with only the countably many objects,
then we only need to use the countable
choice of axiom, and if there are
finitely many objects then we do not
need any additional axiom.
40 The relation can be drawn as follow-
ing.

F(G(d)) d

F(G(d′)) d′

εd

F(G( f )) f

εd′

Equivalence on Categories

Definition 1.6.1. Let F : C � D : G be the functors. We call
F, G an equivalence of categories if there is a natural isomorphisms
η : 1C ' G ◦ F and ε : F ◦ G ' 1D, and G a quasi-inverse of F
and vice versa. If so, we call categories C and D are equivalent, and
write C ' D.

Proposition 1.6.2. The equivalence of categories is an equivalence
relation.

Proof. Suppose that C ' D ' E with F : C � D : G and H : D � E :
K, which are equivalence of categories. Then H ◦ F : C � E : G ◦ K
are equivalence of categories.

Theorem 1.6.3 (Characterizing equivalences of categories).

1. An equivalence of categories functor is fully faithful and essentially
surjective on objects.

2. Assuming the axiom of choice, any fully faithful functor which is essen-
tially surjective on objects defines an equivalence of categories.

Proof.

1. Let F : C � D : G such that η : 1C ' GF and ε : 1D ' FG.37

For all objects d ∈ D we have FG(d) ' d, hence F is essentially
surjective on objects. Same holds for G.
For two f , g : c → c′ ∈ C, if F( f ) = F(g) then GF( f ) = GF(g),
implying f = g.38 Hence F is faithful. Same holds for G.
Finally, for all morphism k : F(c) → F(c′), G(k) : GF(c) →
GF(c′). Then because η is isomorphic, ηc′h = G(k)ηc, and be-
cause ηc′ ◦ h = GF(h) ◦ ηc by definition, we get G(k) = GF(h).
Because G is faithful, k = F(h). Hence F is full. Same holds for G.

2. Suppose that F : C → D is a fully faithful functor which is
essentially surjective on objects. Because of the essential sur-
jectivity on objects, for each object d ∈ D there is a nonempty
subcollection of the objects C which becomes d under F. Using
the axiom of choice39, we can choose G(d) ∈ C such that we have
εd : F(G(d)) ' d. Also because F is fully faithful, for every mor-
phism f : d → d′ ∈ D, there is a morphism G( f ) : G(d) → G(d′)
which satisfies f ◦ εd = εd′ ◦ F(G( f )).40 Hence, if G is a functor,
then ε : FG ⇒ 1D is a natural transformation.
To show that G is actually functor, we need to show that G
conserves identity morphism and morphism composition. For
the identity, choose an object d ∈ D. Notice that 1d ◦ εd =

εd ◦ F(G(1d)). Also because F is a functor, F(1G(d)) = F(G(1d)).
Because εd is an isomorphism, F(1G(d)) = F(G(1d)), and because
F is faithful, 1G(d) = G(1d).
For the composition, choose f : d → d′ ∈ D and g : d′ → d′′.
Notice that (g ◦ f ) ◦ εd = εd′′ ◦ F(G(g ◦ f )). Now due to the
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associativity and natural transformation-like property of ε, we
have the following.

εd′′ ◦ F(G(g ◦ f )) = (g ◦ f ) ◦ εd

= g ◦ ( f ◦ εd)

= g ◦ (εd′ ◦ F(G( f )))

= (g ◦ εd′) ◦ F(G( f ))

= (εd′′ ◦ F(G(g))) ◦ F(G( f ))

= εd′′ ◦ (F(G(g)) ◦ F(G( f )))

= εd′′ ◦ (F(G(g) ◦ G( f )))

Thus, because εd′′ is an isomorphism, we get F(G(g ◦ f )) =

F(G(g) ◦G( f )), and because F is faithful, G(g ◦ f ) = G(g) ◦G( f ).
Finally, because ε is an isomorphic natural transformation, we
can consider the map ε−1

F(c) : F(c) → FGF(c) for any object c ∈ C.

Because F is full, we have ηc : c → FG(c) satisfying F(ηc) = ε−1
F(c).

Now due to the definition of ε and η, for any f : c → c′ ∈ C, we
can consider the following.

εF(c′) ◦ FGF( f ) ◦ F(ηc) = F( f ) ◦ εF(c) ◦ F(ηc)

= F( f )

= εF(c′) ◦ F(ηc′) ◦ F( f )

Because εF(c′) is an isomorphism, we get F(GF( f ) ◦ ηc) = F(ηc′ ◦
f . Because F is faithful, GF( f ) ◦ ηc = ηc′ ◦ f , thus η is a natural
transformation.

1.7
Duality and Opposite Category

Definition 1.7.1 (ETAC). The atomic statement in the elemen-
tary theory of an abstract category(ETAC) consists of:

1. the variables a, b, c, · · · for objects,
2. the variables f , g, h, · · · for arrows,
3. the letter dom for the domain,
4. the letter cod for the codomain,
5. the letter 1 for the identity,
6. the letter ◦ for the composition between composable arrows, and
7. the letter = for the equality,

which are:

1. a = b,
2. f = g,
3. a = dom f ,
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41 The axioms of abstract category in
the Section 1.1 are all the sentences.

42 Indeed, we need to change each
side of equality also, but due to the
reflectivity of equality, it does not
change.

43 This change of the sequence of
morphism is needed to make the
composable pair between morphisms,
whose domains and codomains are
exchanged. See Proposition 1.7.4.

4. b = cod f ,
5. g = 1,
6. h = g ◦ f .

A statement Σ is a well-formed phrase built up from the atomic
statements above with connectives ∧,∨,¬,⇒,⇔ and quantifiers
∀, ∃, ∃!,@.

A sentence is a statement with no free variables, that is, all the
variables are quantified.41

Definition 1.7.2 (Dual). Let Σ be a statement of ETAC. Then
the dual statement of Σ, Σ∗, is a statement which changes all the
atomic statements in the Σ as the following.

1. No change in a = b;
2. No change in f = g;42

3. Change a = dom f into a = cod f ;
4. Change b = cod f into b = dom f ;
5. No change in g = 1;
6. Change h = g ◦ f into h = f ◦ g.43

Proposition 1.7.3. For a statement Σ of ETAC, the dual of the dual is
the original statement. In other words, Σ = Σ∗∗.

Proof. The change 1, 2, and 5 are same. Changing 3, 4, and 6 twice
gives the original statement.

Proposition 1.7.4. For each axiom for a category, the dual of them is
again an axiom.

Proof. The existence of domain changes to the existence of
codomain, and vice versa. The existence of identity morphism does
not change under the dual. For the composability, which says g ◦ f
is composable if and only if cod f = dom g, its dual statement
becomes f ◦ g is composable if and only if dom f = cod g, and
exchanging the letters f , g gives the desired result.

Proposition 1.7.5 (Duality principle). If a statement Σ of ETAC
is a consequence of the axioms, then so is the dual statement Σ∗.

Proof. If we have the proof Π of the statement Σ, then the statement
Π∗ is the proof of the statement Σ∗.

Definition 1.7.6. For a category C, the opposite category Cop is
a category, whose object is obC, and morphisms are f op : y → x
for each f : x → y ∈ C. Here the identity on x is 1x, and the
composition rule becomes gop f op = ( f g)op.
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44 To emphasize this property, some-
times we write Cop as C∗.

45

dom f cod f

dom T( f ) cod T( f )

f

T T

T( f )

46

cod f op dom f op

cod Top( f op) dom Top( f op)

Top

f op

Top

Top( f op)

47

cod f dom f

dom S( f ) cod S( f )

S

f

S

S( f )

Corollary 1.7.7. Suppose that Σ is a statement with free variables.
Then Σ is true for some constant arrows f , g, · · · of a category C if and
only if the dual statement Σ∗ is true for some constant arrows f op, gop, · · ·
of a category Cop. Therefore, a sentence Σ is true in C if and only if a
sentence Σ∗ is true in Cop.44

Proof. Suppose that the atomic sentences are all true under some
constants a, b, f , g, h. If we change f into f op, g into gop, and h into
hop, then all the atomic sentences are true again.

Example 1.7.8.

1. A map T : C → D is a functor if dom T( f ) = T(dom f ),
cod T( f ) = T(cod f ), T(1) = 1, and T(g f ) = T(g)T( f ) for
all composable f , g.45 Here, notice that f , g are bound variables.
Now substitute f , g by the constants. Taking the dual on C and D

gives the following:

dom T( f op)op = T(dom f op)

cod T( f op)op = T(cod f op)

T(1)op = 1

T( f opgop)op = T( f op)opT(gop)op

Define a functor Top : Cop → Dop as Top( f op) = T( f op)op by the
following data: 46

dom Top( f op) = Top(dom f op)

cod Top( f op) = Top(cod f op)

Top(1) = 1

Top( f opgop) = Top( f op)Top(gop)

This is exactly same with above condition. We call Top the dual
functor.

2. Now, take only the dual on C, not on D. Then we get the follow-
ing:

dom T( f op) = T(cod f op)

cod T( f op) = T(dom f op)

T(1) = 1

T( f opgop) = T(gop)T( f op)

This is again a functor. Define a map S : C → D by the following
data:47

dom S( f ) = S(cod f )

cod S( f ) = S(dom f )

S(1) = 1

S( f g) = S(g)S( f )

This is just a renaming of f op to f , gop to g, and Cop to C. We
call T a contravariant functor on C to D. The functor defined
originally is called a covariant functor from C to D.48





1 Here, all the morphisms becomes the
identity morphism on a singleton set,
which is the only morphism.

Chapter 2

Special Objects, Morphisms,
Functors and Categories

You’re so fuckin’ special.

— Radiohead, Creep

2.1
Hom-functor and Initial, Final, Zero Object

Definition 2.1.1 (Hom-functor). Consider an object c ∈ C.
We call hom(c,−) : C → Set as a covariant hom-functor and
hom(−, c) : Cop → Set as a contravariant hom-functor. Here, for
f : d → e, hom(c, f ) = f∗ is a post-composition, and hom( f , c) = f ∗

is a pre-composition.

Definition 2.1.2 (Constant functor). A functor ∗ : C → Set

is called a constant functor if ∗(c) = {•} is a singleton set for all
c ∈ C.1

Definition 2.1.3 (Initial, Final, and Zero object). Consider a
category C.

1. An object s ∈ C is an initial object if for any object c ∈ C, there is
exactly one morphism s→ c in hom(s, c).

2. An object t ∈ C is a final object if for any object d ∈ C, there is
exactly one morphism d→ t in hom(d, t).

3. An object 0 is a zero object an object which is both initial and
terminal.

Proposition 2.1.4. If a category C has a initial, terminal, or zero
object, then it has only one initial, terminal, or zero object respectively, up
to isomorphism.
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Proof. Suppose that t, t′ are both terminal objects. Then the arrows
in t → t′ → t → t′ are unique, whose compositions becomes a
unique endomorphism on t, t′, which is 1t and 1′t. Hence t and t′

are isomorphic.
Dually, initial object is unique.
Because a zero object is terminal object, it is unique.

Example 2.1.5.

1. For a category Set, the empty set φ is an initial object, and the
singleton set {•} is a terminal object. Because they are not iso-
morphic, there is no zero element in Set.

2. For a category Group, the singleton group 0 is both an initial
object and final object, hence a zero object. This is same under
Ring and ModR.

3. Consider a two-object category C, with two parallel non-identity
morphisms. Then there is no initial and final object, hence no
zero object.

Proposition 2.1.6. Consider an object c ∈ C.

1. c is initial if and only if the covariant functor hom(c,−) : C → Set is
naturally isomorphic to the constant functor ∗ : C→ Set.

2. c is final if and only if the contravariant functor hom(−, c) : Cop →
Set is naturally isomorphic to the constant functor ∗ : Cop → Set.

Proof. Because if c is initial in C if and only if c is final in Cop, the
statements above are in dual relation, hence we only need to show
the first relation.

1. Define η : hom(c,−) ⇒ ∗ as ηd : hom(c, d) → 1 and ε : ∗ ⇒
hom(c,−) as εd : 1→ hom(c, d). If c is initial then η, ε are natural
isomorphisms, and conversely if they are natural isomorphisms
then hom(c, d) is a singleton set for all object d ∈ C.

2.2
Zero Morphism

Definition 2.2.1 ((co-)Constant morphism). Let f ∈ C be a
morphism.

1. If f g = f h for any composable morphisms g, h ∈ C, we call f a
constant morphism or left zero morphism.

2. Dually, if g f = h f for any composable morphisms g, h ∈ C, we
call f a coconstant morphism or right zero morphism.

3. If f is constant morphism and coconstant morphism, then we
call f a zero morphism.
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Proposition 2.2.2. A composition between a zero morphism and any
morphism is a zero morphism.

Proof. Let 0 be a zero morphism. Consider 0 f for a composable
morphism f . Then (0 f )g = 0( f g) = 0( f h) = (0 f )h for any
composable morphisms g, h, hence 0 f is a zero morphism. Dually,
j0 is a zero morphism for a composable morphism j.

Example 2.2.3.

1. In the category Group and ModR, a zero morphism is a homo-
morphism mapping all the elements to the identity element 1.
Thus, every morphism f : X → Y in Group or ModR can be
decomposed as f : X → 1→ Y.

2. If we consider a category with two objects and two nontrivial
parallel morphisms, then both two morphisms are vacuously
zero morphisms. Hence zero morphism is noy always unique.

Definition 2.2.4. Let C be a category. If every hom-set hom(c, d)
contains a zero morphism 0cd, and these zero morphisms satisfies
0cd f = 0bd and f 0ab = 0ac, for every a, b, c, d ∈ C and f : b → c ∈ C,
then we call C a category with zero morphisms.

Proposition 2.2.5. If a category C has a zero object, then C is a cate-
gory with zero morphisms.

Proof. For each objects c, d ∈ C, define a map 0cd : c→ 0→ d, where
0 is a zero object, which is well defined. Consider f , g : b → c. Then
0cd ◦ f : b→ c→ 0→ d = b→ 0→ d = 0bd is equal to 0cd ◦ g, hence
0cd is a constant morphism. Dually, 0cd is a coconstant morphism,
hence a zero morphism.

Proposition 2.2.6. If a category C is a category with zero morphisms,
with the collection of zero morphisms {0bc ∈ hom(b, c) : b, c ∈ C}, then
this collection of zero morphisms is unique.

Proof. Suppose that we have another collection {0′bc}. Then because
0bc = 0cc0bc = 0cc0′bc = 0′cc0′bc = 0′bc for any b, c ∈ C, we get the
desired result.

2.3
Groupoid, Connected Category,
and Skeletal Category
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2 Because the composition of isomor-
phisms is isomorphism, this is indeed
a subcategory.

Definition 2.3.1 (Groupoid). A groupoid is a category in which
every morphism is an isomorphism.

Example 2.3.2.

1. A discrete category, which is a category without nonidentity
morphisms, is a groupoid.

2. Let G be a group. Then the category BG is a groupoid.
3. Let C be a category. Then there is a unique maximal groupoid,

which is the subcategory containing all of the objects and only
isomorphic morphisms.2

4. Let X be a space. Then its fundamental groupoid Π1(X) is a cat-
egory, whose objects are the points of X and whose morphisms
are endpoint-preserving homotopy classes of paths.

Lemma 2.3.3. A morphism C is an isomorphism if and only if its image
under an equivalence C ∼−→ D is an isomorphism.

Proof. Let functors F : C � D : G be an equivalence of categories.
Then by the Theorem 1.6.3, F and G are fully faithful. Consider a
morphism f ∈ C. Then F( f ) ∈ D is an isomorphism, thus has an
inverse g. Because F is full, there is f ′ ∈ C such that g = F( f ′). Thus
F( f f ′) and F( f ′ f ) are identities. Because F is faithful, f f ′ and f ′ f
are identities. Hence f is an isomorphism.

Conversely, let f be an isomorphism, whith inverse f ′. Then
F( f )F( f ′) and F( f ′)F( f ) are identities, due to the functor property.

Proposition 2.3.4. Let C be a groupoid, and C ' D. Then D is also a
groupoid.

Proof. The image of every f ∈ D under equivalence is isomorphic.
Due to the Lemma 2.3.3, it implies that f is isomorphic. Hence D is
a groupoid.

Proposition 2.3.5. An opposite category of a groupoid C is equivalent
to C.

Proof. Define F : C → Cop as F( f ) = ( f−1)op. This map is fully
faithful and essentially surjective on objects, hence by the Theorem
1.6.3, F is an equivalence of cagtegories.

Definition 2.3.6 (Connected category). A category is con-
nected if it is not empty, and any pair of objects can be connected
by a finite composition of morphisms.

Proposition 2.3.7. Any connected groupoid is equivalent to the auto-
morphism group of any of its objects.
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3 To show the essential surjectivity, we
need the connectedness.

Proof. For a connected groupoid G, choose an object g ∈ G, and let
G = hom(g, g) be its automorphism group. The inclusion BG ↪→ G

is then, by definition, fully faithful and essentially surjective on
objects3, hence G is equivalence.

Corollary 2.3.8. Let X be a path-connected space. Then any choice
of basepoint x ∈ X gives an isomorphic fundamental group π1(X, x) =

π1(X).

Proof. Because X is path connected, the fundamental groupoid
Π1(X) is connected. Also, π1(X, x) is an automorphism group
of the object xΠ1(X). Thus by the proposition 2.3.7, π1(X, x) '
Π1(X) ' π1(X, x′) for any points x, x′ ∈ X, thus π1(X, x) '
π1(X, x′) categorically, which is also an isomorphism of groups.

Definition 2.3.9 (Skeletal category). A category C is called a
skeletal category if there is only one object in each isomorphism
class.

Lemma 2.3.10. Let C and D be skeletal categories. If C and D are equiv-
alent, then they are isomorphic.

Proof. Suppose that F : C → D be an equivalence of categories.
Because F is fully faithful and essentially surjective on objects, and
D is skeletal, F is bijective on morphisms and surjective on objects.
Suppose that we have c, c′ ∈ C such that F(c) = F(c′) = d. Then
due to the fullness, we have f : c → c′ and g : c′ → c such that
F( f ) = F(g) = 1d. Then F( f g) = F(g f ) = 1d, thus by faithfulness,
f g = 1c′ and g f = 1c, showing that c ' c′. Because C is skeletal,
c = c′. Hence F is bijective on objects.

Proposition 2.3.11. Let Axiom of Choice be true. For a nonempty
category C, there is a skeleton skC of a category C, which is the (up to
isomorphism) unique skeletal category equivalent to C.

Proof. From each isomorphism class of C, choose an object, using
Axiom of Choice. For each morphisms f : b → c ∈ C, define a
morphism f ′ : b′ → c′, where b′ and c′ are the chosen objects of iso-
morphism classes containing b and c, respectively. For f : b→ c and
g : d → e in C, we say g′ and f ′ are composable if and only if c ' d,
and g′ f ′ as gi f , where i : c → d is an isomorphism. From these
data, define skC. By the definition, the inclusion skC ↪→ C is fully
faithful and essentially surjective on objects, hence equivalence. By
the Lemma 2.3.10, every skeleton of C are isomorphic.

2.4
Comma Category
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F(e) F(e′)

G(d) G(d′)

F(k)

f f ′

G(h)

5 This notation is frequently used. If
there is an object where we need to put
a functor, then this object is considered
as such functor.
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Definition 2.4.1 (Comma category). Let C, D, and E be cate-
gories, and F : E → C and G : D → C be functors. The comma
category (F ↓ G) is a category defined with following data:4

1. Objects are all triples

(e, d, f : F(e)→ G(d)) ∈ obE× obD× homC(F(e), G(d)) (2.1)

and,
2. Arrows (e, d, f )→ (e′, d′, f ′) are all pairs

(k : e→ e′, h : d→ d′) ∈ homE(e, e′)× homD(d, d′) (2.2)

satisfying f ′ ◦ F(k) = G(h) ◦ f .
3. The composition (k′, h′) ◦ (k, h) is defined as (k′ ◦ k, h′ ◦ h).

Proposition 2.4.2. Let a, b ∈ C be objects. Abusing the notation, we
define a functor a : 1 → C whose image is a,5 and same with b. Then
(a ↓ b) is equivalent to the discrete category hom(a, b).

Proof. The objects of (a ↓ b) are (•, •, f : a → b), where • is the
object of category 1. We may write (•, •, f : a→ b) as f .

The morphisms of (a ↓ b) from f to g is a pair of morphisms
k, h : • → • satisfying ga(k) = b(h) f . Because a(k) = 1a and b(h) =
1b, g = f . Thus the only morphisms in (a ↓ b) are identities.

Definition 2.4.3 (Slice categories). Let c ∈ C be an object.

1. We define a slice category under c as (c ↓ C), and write it c/C.
2. We define a slice category over c as (C ↓ c), and write it C/c.

2.5
Functor Category

Definition 2.5.1 (Functor category). For the categories B and
C, we define a functor category BC = Funct(C,B) with following
data:

• Objects are all functors T : C→ B, and,
• Arrows S → T are all natural transformations S ⇒ T ∈

Nat(S, T).
• The composition ε ◦ η is defined as the usual composition of

natural transformations.

Example 2.5.2. 1. For small categories B and C, BC is also a small
category.

2. For a small discrete category C, {0, 1}C is isomorphic to the set of
all subsets of C.

2.6
The category of categories
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Definition 2.6.1. The category Cat is a category with following
data:

• Objects are the small cataegories C;
• Arrows are all functors F : C→ D.
• The composition G ◦ F is defined as the usual composition of

functors.

Proposition 2.6.2. The category Cat is a locally small category.

Proof. Let F : C → D be a functor between small categories. On
objects, this functor have at most obDobC-many choices, and for
each choices, there are at most morDmorC-many choices. Thus in
total there are at most obDobC ×morDC-many functors, which is a
set.

Definition 2.6.3. In Cat, there exists a product between two
categories C and D, defined as following:

• Objects are all pairs (c, d) of objects;
• Arrows (c, d)→ (c′, d′) are all pairs ( f : c→ c′, g : d→ d′);
• The composition is defined as ( f ′, g′) ◦ ( f , g) = ( f ′ ◦ f , g′ ◦ g).

We write this category C×D.
The functors P : C×D→ C and Q : C×D→ D, defined as

P( f , g) = f , Q( f , g) = g (2.3)

are called the projections.

Definition 2.6.4. A functor F : C×D→ B is called a bifunctor.
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Chapter 3

Universality

Come, said the Muse,
Sing me a song no poet yet has chanted,

Sing me the Universal.

— Ola Gjeilo, Song of the Universal

3.1
Universal Object and Morphism

Definition 3.1.1 (Universal morphism). Let F : C → D be
a functor. Then a universal morphism from d ∈ D to F is a pair
(c, f : d → F(c)) ∈ obC × homD(d, F(c)), such that for any
(c′, f ′ : d → F(c′)) ∈ obC× homD(d, F(c′)), there is a unique arrow
g : c→ c′ ∈ C satisfying F(g) ◦ f = f ′.1

Example 3.1.2.

1. Consider the forgetful functor U : Veck → Set, and a
set X. Then the universal morphism from X to U is a pair
(VX , j : X ↪→ U(VX)), where VX is a vector space with ba-
sis X. Indeed, consider f : X → U(W) for some vector space
W. Then we can find a unique morphism g : VX → W such
that F(g) ◦ j = f , where the map g is defined from the basis
{ f (x) : x ∈ X}.

2. Indeed, there is a universal morphism for each well-known
forgetful functor. For example, consider the forgetful functor
U : Group → Set. Then a universal morphism from a set X to
U is a free group F(X) and inclusion j : X ↪→ F(X). Similarly,
U : Ring → Set gives a free ring, U : ModR ↪→ Set gives a free
module, and so on.

3. Let Met be a category of all metric spaces with metric-preserving
morphisms. Then the category CMet, a category of complete
metric spaces, is a full subcategory.
Now we consider the forgetful functor U : CMet → Met. Then a
universal morphism from a metric space X to U is a map j : X ↪→
X, where X is a completion of X.
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2 Therefore, because the initial object is
unique up to isomorphism, if (c, f ) is a
universal morphism, then it is unique
up to isomorphism.
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2021.01.22.

Proposition 3.1.3. Let F : C → D be a functor and d ∈ D be an
object. Then (c, f : d → F(c)) is a universal from d to F if and only if
(c, f ) is an initial object in the comma category (d ↓ F).2

Proof. The object (•, c, f : d → F(c)) is an initial object if and only
if, for any other objects (•, c′, f ′ : d → F(c′)), there is a unique
morphism (•, g : c → c′) satisfying F(g) ◦ f = f ′, which is the
definition of universal morphism.

Definition 3.1.4 (Universal object). Let F : C → Set be a func-
tor. Then a universal element of the functor F is a pair (c, x ∈ F(c))
such that for every pair (d, y ∈ F(d)), there is a unique morphism
f : c→ d satisfying F( f )(x) = y.

Proposition 3.1.5.

1. Let F : C→ Set be a functor. Then (c, x ∈ F(c)) is a universal element
if and only if (c, x : {•} → F(c)) is a universal morphism from {•} to
F.

2. Let D be a locally small category, and F : C → D be a functor with
d ∈ D be an object. Then (c, f : d → F(c)) is a universal arrow from d
to F if and only if the pair (c, f ∈ D(d, F(c))) is a universal element of
the functor G = D(d, F(−)).

Proof. This directly follows from the definition.

3.1.D
Universal Object and Morphism: Dual

Definition 3.1.6 (Dual Universal morphism). Let F : C → D

be a functor. Then a universal morphism from F to d ∈ D is a
pair (c, f : F(c) → d ∈ obC× homD(F(c), d), such that for any
(c′, f ′ : F(c′) → d ∈ obC× homD(F(c′), d), there is a unique arrow
g : c′ → c ∈ C satisfying f ◦ F(g) = f ′.3

Proposition 3.1.7. Let F : C → D be a functor and d ∈ D be an
object. Then (c, f : F(c) → d) is a universal from F to d if and only if
(c, f ) is a terminal object in the comma category (F ↓ d).

Proof. This can be proven by the dual proof of 3.1.3.

3.2
Representation of a Functor

Definition 3.2.1. A representation of a functor F : C → Set

is a pair (c, η), where c ∈ C is an object and η : C(c,−) ' F is
a natural isomorphism. We say c a representing object. If such a
representation exists, then we call F a representable functor.
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C(c, c) D(d, F(c))

C(c, c′) D(d, F(c′))
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C(c,g) D(d,F(g))
ηc′
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5

C(c, c) F(c)

C(c, d) F(d)

εc

f∗ F( f )

εd

Proposition 3.2.2. Let F : C → D be a functor and c ∈ C, d ∈ D be
objects.

1. A pair (c, f : d → F(c)) is a universal morphism from d to F if and
only if, for any object c′ ∈ C, we have a bijection of hom-sets,

C(c, c′) ' D(d, F(c′)) (3.1)

which takes each f ′ : c→ c′ into F( f ′) ◦ f : d→ F(c′).
2. The bijection in equation 3.1 is natural in c′, that is, we have a natural

isomorphism C(c,−) ' D(d, F(−)).
3. Conversely, any natural isomorphism between C(c,−) ' D(d, F(−))

is determined by a unique arrow f : d → F(c) such that (c, f : d →
F(c)) is a universal morphism from d to F.

Thus, c represents D(d, F(−)).

Proof.

1. The definition of universality directly implies the bijection.
2. Let f ′ : c→ c′ and g : c′ → c′′. Then F(g f ′) ◦ f = F(g)(F( f ′) ◦ f ).
3. Take a natural isomorphism η : C(c,−) ' D(d, F(−)). Then

for each c′ ∈ C, we get a bijection ηc′ : C(c, c′) → D(d, F(c′)).
Then for any g : c → c′, due to the naturality, we get ηc′ ◦
C(c, g) = D(d, F(g)) ◦ ηc.4 Now putting 1c ∈ C gives ηc′(g) and
F(g) ◦ ηc(1c), for left and right side respectively. Now define
f : d → F(c) as ηc(1c), then we get ηc′(g) = F(g) ◦ f . Because
ηc′ is an isomorphism, we get the result that for each f ′ = ηc′(g),
there is a unique g satisfying f ′ = F(g) ◦ f , which shows that
(c, f ) is a universal morphism.

3.2.D
Representation of a Functor: Dual

Definition 3.2.3. A representation of a functor Fop : Cop → Set

is a pair (c, η), where c ∈ C is an object and η : C(−, c) ' F is
a natural isomorphism. We say c a representing object. If such a
representation exists, then we call F a representable functor.

3.3
The Yoneda Lemma

Lemma 3.3.1 (Yoneda lemma). Let F : C → Set be a functor and
c ∈ C be an object. Then there is a bijection

Nat(C(c,−), F) ' F(c) (3.2)

which sends each natural transformation ε : C(c,−)⇒ F to εc(1c).5
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6 The functor N here means the natural
morphism functor, taking (F, c) to
Nat(C(c,−), F), and the functor E
mean the evaluation functor E(F, c) =
F(c).
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Nat(C(c,−), F) F(c)
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Nat(C(c,−), F) F(c)
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See the sidenote 5 in this section also.

9 By the Lemma 3.3.1. Because Y is also
injective on objects, it is also called a
Yoneda embedding.

10 Hence, sometimes we say the Yoneda
lemma as the generalization of Cay-
ley’s theorem.

Proof. In the Proposition 3.2.2, take D as Set and d := {•}. Then we
only need to show that there is a natural isomorphism η between
Set({•}, F(−)) and F. But because ηc : Set({•}, F(c)) → F(c)
defined by the image of • → F(c) gives a natural isomorphism, we
get the desired result.

Corollary 3.3.2. Let c, d ∈ C. Then each natural transformation
ε : C(c,−) ⇒ C(d,−) has the form C(d → c,−) for a unique arrow
d → c. Furthermore, if ε is an isomorphism, then the arrow d → c is also
an isomorphism.

Proof. By the Lemma 3.3.1, each natural transformation ε :
C(c,−) ⇒ C(d,−) are related to morphisms h : d → c. Because
this image is the result of εc1c, we get ε := C(h,−).

If ε is isomorphism then there is its inverse η : C(d,−) ⇒
C(c,−). Suppose that ε is related to h and η is related to k. Now
η ◦ ε = 1C(c,−) must have the form C(1c,−) = C. Due to the unique-
ness, h ◦ k = 1c. Similarly, k ◦ h = 1d.

Lemma 3.3.3 (Naturality of Yoneda Lemma). Let F : C→ Set be
a functor. The bijection

y : Nat(C(c,−), F) ' F(c) (3.3)

is a natural isomorphism ε : N ⇒ E between the functors N, E : SetD ×
D→ Set.6

Proof. For the naturality on functor, let ε : F ⇒ G. Now take a
natural transformation α ∈ Nat(C(c,−), F). Then by β, it becomes
βα ∈ Nat(C(c,−), G), and then (βα)c1c ∈ G(c) by Yoneda lemma.
Also, α becomes αc1c ∈ F(c) by Yoneda lemma, and then βc(αc1c)

by β. Because these two results are same, y is natural on functor7.
For the naturality on object, let f : c→ d ∈ C. Now take a natural

transformation α ∈ Nat(C(c,−), F). Then by f , it becomes α f ∗, and
by Yoneda lemma, (α f ∗)d(1d) = αd( f ). Also by Yoneda lemma, α

becomes αc(1c), and by f , we get F( f )(αc(1c)) = αd( f ), by Yoneda
lemma.8

Definition 3.3.4. Let YDop : Dop → SetD be a functor defined by
the following data:

• YDop : d 7→ D(d,−) on object;
• YDop : ( f : c→ d) 7→ (D( f ,−) : D(d,−)⇒ D(c,−)) on arrow.

Then this is a faithful functor9, called the Yoneda functor.

Corollary 3.3.5 (Cayley’s theorem). Any group is isomorphic to a
subgroup of a permutation group.10
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11 This notation comes from the con-
cept called coend.
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C(c, c) F(c)

C(c, c′) F(c′) F( f )(αc(1c))

f αc′ ( f )

αc

f∗ F( f )
αc′

Proof. For a group G, consider the category BG. Then the Yoneda
functor BG → SetBGop

gives the isomorphism between the set
of morphisms g ∈ BG and the set of natural transformations
D(g,−) : D(•,−) ⇒ D(•,−), each are described by a morphism
D(g, •)D(•, •) → D(•, •), which is the right multiplication. Because
all these morphisms are distinct isomorphisms, G is a subgroup of
the automorphism group on the set D(•, •).

3.3.D
The Yoneda Lemma: Dual

Lemma 3.3.6. Let F : Cop → Set be a functor and c ∈ C be an object.
Then there is a bijection

Nat(C(−, c), F) ' F(c) (3.4)

which sends each natural transformation ε : C(−, c)⇒ F to εc(1c).

Proof. The dual of the proof of the Lemma 3.3.1 shows this state-
ment.

Definition 3.3.7. Let YD : D→ SetD
op

be a functor defined by the
following data:

• YD : d 7→ D(−, d) on object;
• YD : ( f : c→ d) 7→ (D(−, f ) : D(−, c)⇒ D(−, d)) on arrow.

Then this is a faithful functor, called the dual Yoneda functor, or
just the Yoneda functor.

3.4
Category of Elements

Definition 3.4.1. Let F : C → Set be a functor. Then the category
({•} ↓ F) is called the category of elements, and written as

∫ C F.11

Proposition 3.4.2. Let F : C → Set be a functor. Then the category
of elements

∫ C F is isomorphic to the comma category (Y ↓ F), where
Y : Cop → SetC is the Yoneda functor and F : 1→ SetC.

Proof. The objects in
∫ C F are (c, x ∈ F(c)), and the objects in

(Y ↓ F) are (C(c,−), α : C(c,−) ⇒ F), which are bijective by
Lemma 3.3.1 with x 7→ αc(1c). Now notice that the morphism
f : c → c′ with F f (x) 7→ F f (x′) uniquely defines the morphism
between α : C(c,−) ⇒ F and β : C(c′,−) ⇒ F as C( f op,−) :
C(c′,−) ⇒ C(c,−) with C( f op, c′)(1c′) = f ∈ C(c, c′) which
satisfies α ◦ C( f op,−) = β. But it implies αc′ ◦ C( f op, c′)(1c′) =

αc′( f ) = βc′(1c′) ∈ F(c′). Now, F( f )(αc(1c)) = αc′( f ) due to
the property of natural transformation12, the morphism between
α and β also has gives the unique morphism f : c → c′ with
F( f )(αc(1c)) 7→ F( f )(βc′(1c′)).
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13 Hence the representation of a functor
is unique up to isomorphism.

Theorem 3.4.3. Let F : C → Set be a functor. Then F is representable
if and only if

∫ C F has an initial object.13

Proof. By Proposition 3.4.2, F is representable if and only if a nat-
ural isomorphism α : C(c,−) ⇒ F exists as an object in (Y ↓ F),
which is initial because the morphism from α to β : C(c′,−) ⇒ F is
defined uniquely by α−1 ◦ β : C(c′,−)⇒ C(c,−).



1 Hence, lim←−I
β is a small set.

2

• β(j)

• β(i)

xj

β(i→j)

xi

3 Here, Set(X, β) : Iop → Set is a
functor with i 7→ Set(X, β(i)).

Chapter 4

Limits

We’ve temporarily limited some of your account features.

— Twitter, Donald Trump Jr.’s Limited account

4.1
Limits on Set

Definition 4.1.1. Let I be a small category and C be a category.
Then we say α : I → C an inductive system. Dually, we say β :
Iop → C a projective system.

Definition 4.1.2. Let β : Iop → Set b a projective system. Then
the projective limit of β is defined as the following.

lim←−
I

β = Nat({•}, β) (4.1)

Here, {•} : Iop → Set is a single point set constant functor.

Proposition 4.1.3. For a projective system β : Iop → Set, the
following holds.1

lim←−
I

β '
{
{xi}i∈I ∈∏

i∈I
β(i) : β(s)(xj) = xi, ∀s ∈ I(i, j)

}
(4.2)

Proof. Notice that the natural isomorphism x : {•} ⇒ β is described
by the elements xi ∈ β(i) and morphisms β(s) : β(j) → β(i) with
xj 7→ xi.2 This is the described set above.

Lemma 4.1.4. Let β : Iop → Set be a functor and X ∈ Set be a set.
Then there is a following natural isomorphism.3

Set(X, lim←−
I

β) ' lim←−
I

Set(X, β) (4.3)
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4 Here, as above, C(α, c) : I → Set
is a functor with i 7→ C(α(i), c), and
C(c, β) : Iop → Set is a functor with
i 7→ C ∗ (c, β(i)).

5 which means, lim−→I
α and lim←−I

β.

Proof. For a map f : X → lim←−I
β, which is defined by f (x) =

{xi}i∈I ∈ lim←−I
β, consider the set of maps { fi}i∈I such that fi : X →

β(i) with fi(x) = xi. Due to the property of {xi}, β(s) f j(x) = fi(x),
hence the collection { fi}i∈I is in the following set.

lim←−
I

Set(X, β) '
{
{ fi}i∈I ∈∏

i∈I
Set(X, β(i)) : β(s) f j = fi, ∀s ∈ I(i, j)

}
(4.4)

Proposition 4.1.5. Let ϕ : J → I and β : Iop → Set be functors. Then
there is a following natural morphism.

ϕ : lim←−
I

β→ lim←−
J
(β ◦ ϕop) (4.5)

Proof. Notice the followings.

lim←−
I

β = Nat({•}, β)

lim←−
J

β ◦ ϕop = Nat({•}, β ◦ ϕop) (4.6)

Now we may define an isomorphism α : {•} ⇒ β and ϕα : {•} ⇒
β ◦ ϕop as ϕ(α)j = αϕ(j), which is a natural morphism.

4.2
Limits on General Categories

Definition 4.2.1. Let C be a category and c ∈ C be an object.

1. Let α : I → C be an inductive system and β : Iop → C be a
projective system. Then we define the functors lim−→I

α ∈ C → Set

and lim←−I
β ∈ Cop → Set respectively, as followings.4

lim−→
I

α : c 7→ lim←−
I

C(α, c)

lim←−
I

β : c 7→ lim←−
I

C(c, β) (4.7)

If these functors are representable, then we write those represen-
tations with same notations5 by abusing notations, calling them
as inductive limit of α and projective limit of β, respectively.

2. For each inductive system I → C, suppose that lim−→I
α is rep-

resentable. Then we say C admits inductive limits indexed by
I.
Dually, for each projective system Iop → C, suppose that lim←−I

β

is representable. Then we say C admits projective limits indexed
by I.

3. Let C admits inductive or projective limits indexed by all the
finite or small categories. Then we say C admits finite or small
inductive or projective limits.
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6 From now, we omit the subscript if
the domain of inductive system is not
important or well-known.
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F(i) F(j)

c c

F(i→j)

εi εj

c c

F(i) F(j)

ηi ηj

F(i→j)

Proposition 4.2.2. There is a natural isomorphism between definitions
of projective limit on Definition 4.1.2 and 4.2.1 if C = Set.

Proof. This is just another way to read the Lemma 4.1.4.

Proposition 4.2.3. Let α : I → C be an inductive system. Then we
have a following natural isomorphism.6

lim−→ α ' lim←− αop. (4.8)

Proof. From the definition, we have lim−→ α(c) = lim←−C(α, c) and
lim←− αop(c) = lim←−Cop(c, α) = lim←−C(α, c). Also, lim−→ α(c → d) =

lim←−C(α, c → d) and lim←− αop(c → d)op = lim←−Cop(c → d, α) =

lim←−C(α, c→ d).

Proposition 4.2.4. For ϕ : J → I, α : I → C and β : Iop → C are
functors. Then we have following natural morphisms.

lim−→(α ◦ ϕ)→ lim−→(α) (4.9)

lim←− β→ lim←−(β ◦ ϕop) (4.10)

Proof. This directly follows from the Proposition .

4.3
Limits as Universal Cones

Definition 4.3.1. The diagonal functor is a functor ∆ : C → CJ

taking f : c → c′ as ∆ f : ∆c ⇒ ∆c′, where ∆c : J → C is a functor
with ∆c(i→ j) = 1c.

Definition 4.3.2. A cone from F : J → C to c ∈ C is a natural
transformation ε : F ⇒ ∆c.

Dually, a cone from c ∈ C to F : J → C is a natural transforma-
tion η : ∆c⇒ F.7

Definition 4.3.3. A colimit of a functor α : J → C is a universal
morphism (colimα, µ) from α ∈ CJ to ∆ : C → CJ . We call colimα a
colimit object, and µ : α⇒ ∆(limα) as a colimit cone.

Dually, a limit of a functor β : J → C is a universal morphism
(limβ, ν) from ∆ : C → CJ to β ∈ CJ . We call limβ a limit object,
and ν : ∆(limβ)⇒ β as a limit cone.

Lemma 4.3.4. If lim−→ α or lim←− β are representable in C, then we get

C(lim−→ α, c) ' lim←−C(α, c) (4.11)

and
C(c, lim←− β) ' lim←−C(c, β). (4.12)
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Proof. This naturally follows from the definition of representation
functor.

Theorem 4.3.5. Let α : J → C be an inductive system and β : Jop →
C a projective system. Then there is a following natural isomorphism
between inductive limit and colimit if one of them exists, and dually,
between projective limit and limit if one of them exists.

lim−→ α ' colimα, lim←− β ' limβ (4.13)

Proof. Limit case is the dual of colimit case. Because of the Proposi-
tion 3.2.2, there is a natural

C(colimα, c) ' Nat(α, ∆(c)) (4.14)

for all object c ∈ C. Also, by Lemma 4.3.4, we get

C(lim−→ α, c) ' lim←−C(α, c) ' Nat({•},C(α, c)). (4.15)

Now notice that Nat(α, ∆(c)) and Nat({•},C(α, c)) are naturally
isomorphic, with mapping from ε : α⇒ ∆(c) to η : {•} ⇒ C(α, c) as
ηi(•) = εi. Hence C(colim,−) ' C(lim−→ α,−), implying the desired
bijection.

Proposition 4.3.6. Let F : I → C has its colimit lim−→ F. Consider a
cone F ⇒ ∆ lim−→ F. Then for any cone F ⇒ ∆c, there is a unique natural
transformation ∆ lim−→ F ⇒ ∆c factoring F ⇒ ∆c.

Dually, let F : I → C has its limit lim←− F. Consider a cone ∆ lim←− F ⇒ F.
Then for any cone ∆c ⇒ F, there is a unique natural transformation
∆c⇒ ∆ lim←− F factoring ∆c⇒ F.

Proof. Due to the Theorem 3.4.3, there is an initial object of∫ C lim−→ F. Theorem 4.3.5 then gives an initial object of Nat(F, ∆c),
which is a set of cone. The dual proof shows the dual state-
ment.

4.4
Special Limits and Colimits

Definition 4.4.1. Let F : I → C be a functor.
For a cone ε ∈ Nat(F, ∆(c)), we call each εi : F(i) → c a leg of a

cone.
Dually, for a cone η ∈ Nat(∆(c), F), we call each ηi : c → F(i) a

leg of a cone.

Definition 4.4.2. Let F : I → C be a functor, where I is a discrete
category. Then we call lim←− F a product of {Fi}i∈I . We call each leg a
projection. We often write as following.

∏
i∈I

Fi := lim←− F, pj : ∏ Fi → Fj (4.16)
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If I is a discrete category with two objects 1 and 2, then we write

F1 × F2 := ∏
i∈I

Fi. (4.17)

Definition 4.4.3. Let F : I → C be a functor, with I is a discrete
category. Then we call lim−→ F a coproduct of {Fi}i∈I . We call each leg
an injection. We often write as following.

ä
i∈I

Fi := lim−→ F, ij : Fj →ä Fi (4.18)

If I is a discrete category with two objects 1 and 2, then we write

F1 t F2 := ä
i∈I

Fi. (4.19)

Definition 4.4.4. Let F : I → C be a functor, with I be a category
with two objects 1, 2 and two non-identity morphisms f , g from
1→ 2. Then we call lim←− F an equalizer of F( f ) and F(g).

Definition 4.4.5. Let F : I → C be a functor, with I be a category
with two objects 1, 2 and two non-identity morphisms f , g from
1→ 2. Then we call lim−→ F a coequalizer of F( f ) and F(g).

Definition 4.4.6. Let F : I → C be a functor, with I be a category
with three objects 1, 2, 3 and two non-identity morphisms f : 1 → 2,
g : 3→ 2. Then we call lim←− F a pullback of F( f ), F(g).

Definition 4.4.7. Let F : I → C be a functor, with I be a category
with three objects 1, 2, 3 and two non-identity morphisms f : 2 → 1,
g : 2→ 3. Then we call lim−→ F a pushout of F( f ), F(g).

Definition 4.4.8. Let F : ωop → C be a functor where ω

is a poset category on N. Then we call lim←− F an inverse limit of
{Fi}i∈N.

Definition 4.4.9. Let F : ω → C be a functor. Then we call lim−→ F a
direct limit of {Fi}i∈N.

4.5
Complete Category and Cocomplete Category

Definition 4.5.1. A category C is called a complete category if,
for all small categories I and functors F : I → C, lim←− F ∈ C.

Dually, a category C is called a cocomplete category if, for all
small categories I and functors F : I → C, lim←− F ∈ C.
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∏i→j Fj ∏i Fi

Fj Fi

pi→j

pi→j
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f
g

F(i→j)

Proposition 4.5.2. The category Set is complete and cocomplete.

Proof. This directly follows from the Definition 4.2.1.

Definition 4.5.3. Let U : C → X be a functor. We call U creates
limits for a functor F : I → C if:

1. For every limiting cone ε : ∆x ⇒ UF, there is an object c ∈ C

with U(c) = x, and a cone η : ∆c⇒ F with Uη = ε;
2. This cone η : ∆c⇒ F is a limiting cone.

Proposition 4.5.4. Let U : Group → Set be the forgetful functor.
Then it creates (co)limits.

Proof. Let F : I → Group be a functor. Consider two cones ε, η ∈
Nat({•},C(UF, c)) for some object c ∈ C. Then we may define
(ε · η)i := εi · ηi and

(
ε−1)

i := ε−1
i . Hence Nat({•},C(UF, c)) has a

group structure, and this group structure is unique.
Let G be a group with cone τ : ∆G ⇒ F where τiLG → Fi.

Then Uτ : UG ⇒ UF is a cone, Thus by universality we have
Uτi = UG ⇒ UF is a cone in Set, hence there is a unique morphism
h : UG → L Now,

h(g1g2)j = λj(g1)λj(g2) = (hg1)j(hg2)j = ((hg1)(hg2)) (4.20)

Hence h is a group homomorphism, showing that the limit is in-
deed in Grp.

The colimit case is the dual of limit case.

Corollary 4.5.5. A category Group is complete and cocomplete.

Proof. This is the direct corollary.

Proposition 4.5.6. If a category C allows all equalizers and all prod-
ucts, then C is complete.

Dually, if a category C allows all coequalizers and all coproducts, then
C is cocomplete.

Proof. We only show the complete case here. Let F : I → C be
a functor. Then because of the property of product, there are two
morphisms f , g : ∏i Fi → ∏i→j Fj, satisfying pi→j f = pj and
pi→jg = F(i → j)pi.8 Now consider an equalizer e : c → ∏i Fi.
Define µi := pie : c → Fi. Then due to the product and equalizer
property, F(i→ j)µi = µj, hence µ : ∆c⇒ F is a cone.

Choose another cone τ : ∆d ⇒ F. Then each morphisms τi : d →
Fi defines a unique map h : d → ∏i Fi due to the product property,
and f h = gh due to the cone property. Hence h factors uniquely
through e, implying τ factors uniquely through the cone µ. Thus µ

is a limit cone.
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4.6
Continuous Functor

Definition 4.6.1. We call a functor H : C → D continuous if, for
every functor F : I → C, lim←−HF = H lim←− F.

Dually, we call a functor H : C → D cocontinuous if, for every
functor F : I → C, lim−→HF = H lim−→ F.

Proposition 4.6.2. A hom-functor C(c,−) is continuous.

Proof. This directly follows from the Definition 4.2.1.

Proposition 4.6.3. Let U : C → X be a functor which creates limits
for every functors F : I → C with a limit of UF : I → X. Then U is
continuous.

Proof. Let ε : ∆c ⇒ F and η : ∆x ⇒ UF be limiting cones. Because
U creates limits, there is a unique limiting cone σ : ∆d ⇒ F with
Uσ = η. Since limits are unique up to isomorphism, we have an
isomorphism f : d ' c with ε f = σ. Therefore U( f ) : U(d) = x '
U(c) and (Uε) (U( f )) = Uσ = η, hence Uε : ∆U(c) ⇒ UF is a
limiting cone.

4.7
Limit as a Functor

Lemma 4.7.1. Let F, G be a functor and H be a map between mor-
phisms. If F = GH and G is faithful, then H is a functor.

Proof. We need to show that H(g f ) = H(g)H( f ). Now, GH(g f ) =
G(H(g f )) and F(g f ) = F(g)F( f ) = GH(g)GH( f ) = G(H(g)H( f )),
hence G(H(g f )) = G(H(g)H( f )). Because G is faithful, H(g f ) =

H(g)H( f ).

Theorem 4.7.2. If a category C is complete, then lim←− and lim−→ are
functor CJ → C.

Proof. Because the constant functor ∆ : C → CJ is faithful, by
Lemma 4.7.1, it is enough to show that ∆ lim←− and ∆ lim−→ are functors.
Because ∆ lim−→ case can be shown by taking dual statement of ∆ lim←−
case, we may only prove ∆ lim←− case.

Let F, F′ : J → C be functors with natural transformation
β : F ⇒ F′. Due to the limit property, there are unique limiting
cones µ : ∆ lim←− F ⇒ F and µ′ : ∆ lim←− F′ ⇒ F′. Then due to the
limit property, there is a natural transformation ∆(lim←− β) satisfying
βµ = µ′∆(lim←− β). Due to the uniqueness, if there is a natural trans-
formation α : F′ ⇒ F′′, then ∆(lim←− α)∆(lim←− β) = ∆(lim←− αβ), we get
the desired result.





1 Notice that ( f †)† = f .

Chapter 5

Adjoint

Ah! Oh, the... accusative! Accusative! Ah!
’Domum’, sir! ’Ad domum’! Ah! Oooh! Ah!

— Brian, Life of Brian

5.1
Adjoints and Adjunctions

Theorem 5.1.1. Consider the functor F : C → D, which defines a
functor F∗ : SetD

op → SetC
op

as F∗(H)(c) = H(F(c)) for H ∈ SetD
op

and c ∈ obC.
Suppose that the functor F∗ ◦ YD(d) is representable for each object

d ∈ D. Then there is a functor D→ C such that F∗ ◦ YD ' YC ◦ G, which
is unique up to unique isomorphism.

Proof. Because each F∗ ◦ YD(d) is representable, the object in the
image of F∗ ◦ YD is in the image of YC. Hence, because YC is fully
faithful, we may take the quasi-inverse functor I : SetC

op → C. Thus
G = I ◦ F∗ ◦YD is the only possible such functor.

Definition 5.1.2. Let L : C → D and R : D → C be two functors.
Suppose thath there is a following natural isomorphism between
bifunctors.

D(L(−),−) ' C(−, R(−)) : Cop ×D→ Set (5.1)

Then we call (L, R) a pair of adjoint functors, L a left adjoint to R,
and R a right adjoint to L.

Let f : L(c) → d for some c ∈ C, d ∈ D. Then we write the image
of f under the isomorphism above as f † : c → R(d), and call it
adjoint of f .1

Proposition 5.1.3. Let L : C→ D and R : D→ C be two functors.

1. If L admits a right adjoint functor, this adjoint is unique up to unique
isomorphism.
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h R(k)
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2. If R admits a left adjoint functor, this adjoint is unique up to unique
isomorphism.

3. A functor L admits a right adjoint if and only if the functor
D(L(−), d) is representable for any d ∈ D.

Proof. The functor L∗ ◦ YD can be considered as a functor
D(L(−),−), and YC ◦ R as C(−, R(−)). Hence this is the refor-
mulation of Theorem 5.1.1.

Proposition 5.1.4. Let L : C → D and R : D → C be two functors,
and let ε : 1C ⇒ RL and η : LR ⇒ 1D be natural transformations2

satisfying the following triangle identities.3

1L = (η ◦ L) ◦ (L ◦ ε) : L→ LRL→ L

1R = (R ◦ η) ◦ (ε ◦ R) : R→ RLR→ R (5.2)

Then (L, R) is a pair of adjoint functors. We say (L, R, η, ε) an adjunc-
tion and ε, η the adjunction morphisms.

Proof. What we need to show is the following two morphisms are
inverse to each other.4

D(L(c), d) R−→ C(RL(c), R(d)) εc−→ C(c, R(d))

C(c, R(d)) L−→ D(L(c), LR(d))
ηd−→ D(L(c), d) (5.3)

Let g : L(c) → d. Then by the first morphism, we get R(g)εc, and
by the second morphism, we get ηdLR(g)L(εc). Now due to the
naturality of η, ηdLR(g)L(εc) = gηL(c)L(εc). Finally, due to the
Equation 5.2, ηL(c)L(εc) = 1L(c), thus g becomes g. Similarly, f : c →
R(d) becomes εcRL( f )R(ηd), and εcRL( f )R(ηd) = f εR(d)R(ηd), and
R(ηd)εR(d) = 1R(d) gives f becomes f .

Lemma 5.1.5. Let L : C → D and R : D → C be two functors
with isomorphisms D(L(c), d) ' C(c, R(d)) for all c ∈ C and d ∈ D.
Then these isomorphisms are natural if and only if k f = g†L(h) implies

R(k) f † = gh for all L(c)
f−→ d k−→ d′ and c h−→ c′

g−→ R(d′), and vice
versa.5

Proof. Notice that the naturality is equivalent to condition that, for
all k : d → d′, every f : L(c) → d satisfies R(k) f † = (k f )†, and for
all h : c → c′, every g : c′ → R(d′) satisfies gh = (g†L(h))†. Hence,
k f = g†L(h) if and only if R(k) f † = gh. The converse also can be
shown in the same way.

Proposition 5.1.6. Let C
L−⇀↽−
R

D be adjoint functors. Then there are

natural transformations ε : 1C ⇒ RL and η : LR ⇒ 1D, satisfying the
Equation 5.2.
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6

L(c) L(c)

L(c′) L(c′)

1L(c)

L( f ) L( f )
1L(c′ )

↔
c RL(c)

c′ RL(c′)

ηc

f RL( f )
ηc′

Proof. Define ε : 1C ⇒ RL as εc := 1†
L(c) : c → RL(c). Because

L( f )1L(c) = 1L(c′)L( f ) for all f : c → c′, by Lemma 5.1.5, we have
RL( f )1†

L(c) = 1†
L(c′) f , showing that ε is a natural transformation6.

Similarly, we can define η.

Proposition 5.1.7 (Composition of adjoint functors). Let

C1,2,3 be categories with functors C1
L1−⇀↽−
R1

C2
L2−⇀↽−
R2

C3. If (L1, R1) and

(L2, R2) are pairs of adjoint functors, then (L2 ◦ L1, R1 ◦ R2) is a pair of
adjoint functors.

Proof. Take the objects c1 ∈ C1 and c3 ∈ C3. Then there are follow-
ing functorial isomorphisms.

C3(L2L1(c1), c3) ' C2(L1(c1), R2(c3))

' C1(c1, R1R2(c3)) (5.4)

By definition this is a pair of adjoint functors.

Proposition 5.1.8. Let (L, R, η, ε) be an adjunction.

1. The functor L is fully faithful if and only if ε : 1C ⇒ RL is isomorphic.
2. The functor R is fully faithful if and only if η : LR⇒ 1D is isomorphic.
3. The followings are equivalent.

(a) L is an equivalence of categories.
(b) R is an equivalence of categories.
(c) L and R are fully faithful.

Proof. Because the second statement is dual of the first statement,
and the third statement comes naturally from the third statement,
we only need to show the first statement. Now L is fully faith-
ful if and only if C(c, c′) ' D(L(c), L(c′)), but D(L(c), L(c′)) '
C(c, RL(c′)). Hence ε : 1C ⇒ RL is an isomorphism.

5.2
Adjoints with Limits and Colimits

Lemma 5.2.1. The functor lim←− : CJ → C is a right adjoint of ∆ : C →
CJ .

Dually, the functor lim−→ : CJ → C is a left adjoint of ∆ : C→ CJ .

Proof. This is just a repharsing of Lemma 4.3.4.

Theorem 5.2.2. Every right adjoint functors are continuous. Dually,
every left adjoint functors are cocontinuous.
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CJ DJ

C D

LJ

lim←−
RJ

lim←−
L

∆

R

∆

Proof. Let (L, R, η, ε) be an adjunction between C and D. Then we
have an a collection (LJ , RJ , η J , εJ) between CJ and DJ . Then the tri-
angle identities still holds, so the collection is indeed an adjuntion.
Now7, for the left adjoints,

LJ∆ = ∆L (5.5)

by definition, and their composition are again left adjoints, thus
their right adjoints must commute:

lim←− RJ = R lim←− . (5.6)

This shows that, for F : J → D, lim←− RJ(F) = lim←− RF = R lim←− F.

5.3
Example: Tensor-Hom Adjunction

Proposition 5.3.1. Let R, S be rings. Choose an (R, S)-bimodule X,
and consider two functors

−⊗R X : ModR → ModS (5.7)

ModS(X,−) : ModS → ModR (5.8)

Then they are adjoint pairs: that is, there is a following natural isomor-
phism for all (A, R) bimodule Y and (B, S) bimodule Z with rings A, B.

ModS(Y⊗R X, Z) ' ModR(Y,ModS(X, Z)) (5.9)

Proof. It is enough to find out the adjunction morphisms. define
ε : 1ModS ⇒ ModS(X,−⊗R X) as

εY : Y → ModS(X, Y⊗R X), εY(y)(x) = y⊗ x (5.10)

and define η : ModR(X,−)⊗R X ⇒ 1ModR as

η : ModR(X, Z)⊗R X → Z, ηZ(φ⊗ x) = φ(x). (5.11)

Now we need to show the equation 5.2 holds. Because

(η ◦ −⊗R X) ◦ (−⊗R X ◦ ε)Y

: Y⊗R X → ModS(X, Y⊗R X)⊗R X → Y⊗R X (5.12)

takes
y⊗ x 7→ εY(y)(−)⊗ x 7→ εY(y)(x) = y⊗ x (5.13)

and

(ModS(X,−) ◦ η) ◦ (ε ◦ModS(X,−))Z

: ModS(X, Z)→ ModS(X,ModS(X, Z)⊗R X)→ ModS(X, Z) (5.14)

takes
φ(−) 7→ εModS(X,Z)(φ)(−) = φ⊗− 7→ φ(−) (5.15)

showing the desired result.
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8 A preorder set is a set with binary
relation ≤ which is reflexive and
transitive.

2021.01.30.

Corollary 5.3.2. The Hom functor ModS(X,−) is continuous, and
the tensor product functor −⊗R X is cocontinuous.

Proof. This directly follows from the Theorem 5.2.2 and Proposition
5.3.1.

5.4
Example: Adjoint for Preorders

Theorem 5.4.1. Let P, Q be two preorder8 categories with order-
preserving functors L : P → Qop and R : Qop → P. Then (L, R) is
an adjoint pair if and only if

(L(p) ≥ q)⇔ (p ≤ R(q)). (5.16)

If so, we call L and R a Galois connection. Thus,

L(p) ≥ LRL(p) ≥ L(p), R(q) ≤ RLR(q) ≤ R(q). (5.17)

Proof. This directly follows from the definition of adjoint pair, and
its triangular equalities.

Example 5.4.2. Let G be a group acting on a set X. Take P :=
P(X) and Q := P(G). Define L(S) := {g : s ∈ S ⇒ gs = s} and
R(H) := {x : h ∈ H ⇒ hx = x}. Then we get

L(S) ≥ H ⇔ hs = s∀s ∈ S, h ∈ H ⇔ S ≤ R(H). (5.18)

Therefore L and R is a Galois connection.





1 Usually we write the binary operator
as +, and call it addition.
2 This is, ( f + g) ◦ (h + k) = f ◦ h + g ◦
h + f ◦ k + g ◦ k.

3 This morphism is unique due to the
universal property of product.
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Chapter 6

Abelian Category

And the Lord said unto Cain, Where is Abel thy brother?
And he said, I know not: Am I my brother’s keeper?

— Genesis 4:9, King James Version

6.1
Pre-Additive Category

Definition 6.1.1. Let C be a category. Then we call C a pre-
additive category if the set hom(c, d) is endowed with an abelian
group structure1 and the composition map is bilinear2.

Example 6.1.2. 1. For a ring R, the module category ModR is an
additive category. Here, the addition is defined as ( f + g)(m) =

f (m) + g(m).
2. For a ring R, consider the category BR, which is a category with

one object, R morphisms, with their multiplication as composi-
tion. Using the addition in R, it is an additive category.

Proposition 6.1.3. Let C be a preadditive category. Denote 0cd ∈
hom(c, d) as the identity element. Then the collection of 0cd for all objects
c, d ∈ C gives a category with zero morphisms.

Proof. For any f : b → c, 0cd f = (0cd + 0cd) f = 0cd f + 0cd f , hence
0cd f = 0bd. Similarly, 0ac = f 0ab.

Lemma 6.1.4. Let c, d ∈ C be objects in a pre-additive category C.

1. Let c× d ∈ C with projections pc : c× d → c and pd : c× d → d.
Let ic : c → c × d be the3 morphism defined by pc ◦ ic = 1c and
pd ◦ ic = 0cd. Similarly, let id : d → c× d be the morphism defined by
pc ◦ id = 0dc and pd ◦ id = 1d. Then the following holds.

ic ◦ pc + id ◦ pd = 1c×d (6.1)
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2. Conversely, let e ∈ C with pc : e → c, pd : e → d, ic : c → e, and
id : d → e satisfying the above conditions. Then e is a product of c and
d by (pc, pd) and a coproduct by (ic, id).

Proof.

1. Notice that,

pc ◦ (ic ◦ pc + id ◦ pd) = 1c ◦ pc + 0cd ◦ pd = pc (6.2)

and similarly

pd ◦ (ic ◦ pc + id ◦ pd) = 0cd ◦ pc + 1d ◦ pd = pd (6.3)

Therefore, due to the universal property of product, we get the
desired result.

2. Consider the map f : e → c× d, which is uniquely induced by
the maps pc and pd. Also define g = ic ◦ pc + id ◦ pd. 4 Now first
we get the following.

g f = (ic pc + id pd) f

= ic pc + id pd

= 1e (6.4)

To show f g = 1c×d, notice the following.

pcg = pc(ic pc + id pd)

= 1c pc + 0dc pd

= pc (6.5)

Similarly, pdg = pd. Therefore, due to the universal property of
product, f g = 1c×d.
Reversing all the arrows shows that e is a coproduct5.

Corollary 6.1.5. Let C be a pre-additive category with objects c, d ∈
C. Then c t d exists if c × d exists, and there is the isomorphism r :
c t d→ c× d satisfying the following.

pj ◦ r ◦ ik =

1j, j = k

0kj, j 6= k
(6.6)

Here, pj and ik are projection and injection, respectively.

Proof. From Lemma 6.1.4, consider f ◦ f ′, which is isomorphism.
Then pj ◦ f ◦ f ′ ◦ ik = pj ◦ ik, gives the desired result6.

Definition 6.1.6. Let c, d ∈ C be objects in pre-additive category.
If c × d exists, then we write it c ⊕ d, which is the direct sum of c
and d.
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d d⊕ d d

d

1c
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1c

f

p1 p2

f⊕g g

i1

1d
σd

i2

1d

Corollary 6.1.7. Let C be a pre-additive category with objects c, d
and morphisms f , g ∈ hom(c, d). Suppose that c ⊕ c and d ⊕ d exist
with diagonal morphism δc : c → c ⊕ c and codiagonal morphism
σd : d⊕ d→ d. Then f + g = σd ◦ ( f1 ⊕ f2) ◦ δc.

Proof. Denote pi : c ⊕ c → c be the projection maps and ij : d →
d ⊕ d be the injection maps. Notice that f ⊕ g = i1 f p1 + i2 f p2,
therefore σd ◦ ( f ⊕ g) ◦ δc = 1d ◦ f ◦ 1c + 1d ◦ g ◦ 1c = f + g.7

Definition 6.1.8. Let F : C → D be a functor of pre-additive
categories. Then we say F is an additive functor if Fcd : C(c, d) →
D(F(c), F(d)) is a group homomorphism for any c, d ∈ C.

6.2
Additive Category

Definition 6.2.1. A category C is additive category if:

1. C has a zero object 0, and thus zero morphisms 0cd : c→ 0→ d;
2. For any objects c, d ∈ C, c× d ∈ C and c t d ∈ C;
3. For any objects c, d ∈ C, define the morphism r : c t d → c× d

satisfying the following.

pj ◦ r ◦ ik =

1j, j = k

0kj, j 6= k
(6.7)

Here, pj and ik are projection and injection, respectively. Then r
is an isomorphism.

4. For any c ∈ C, there is an endomorphism f ∈ hom(c, c) such that
the composition

c δc−→ c× c
( f ,1c)−−−→ c× c r←− c t c σc−→ c (6.8)

is the zero morphism. Here, δc is the diagonal morphism, and δc

is the codiagonal morphism.

Proposition 6.2.2. A pre-additive category with finite products is
additive.

Proof. By Corollary 6.1.5 and 6.1.7, with a = −1c, we get the desired
result.

Example 6.2.3. Let R be a ring. Then the module category ModR

and finitely generated module category Modf
R are additive category.

Definition 6.2.4. Let C be an additive category. Then a chain
complex c• in an additive category C is a sequence of objects
{cj}j∈Z and morphisms dj

c : cj → cj+1 such that dj
cdj−1

c = 0cj−1cj+1

for all j ∈ Z.
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8 The case g is monic can be shown in
the same way.

6.3
Subobjects and Elements

Definition 6.3.1. Let C be a category. For two monics u : a → c
and v : b → c, there is a partial order u ≤ v when u = vw for
some (monic) w, with equivalence relation u ≡ v. We call each
equivalence class of these monics a subobject.

Dually, for two epis r : a → b and s : a → c, there is a partial
order r ≤ s when r = qs for some (epi) q, with equivalence relation
r ≡ s. We call each equivalence class of these epis a quotient object.

Proposition 6.3.2. Let two subobjects u, v are equivalent. Then there
is an isomorphism f such that u = v f .

Proof. By definition, u = v f and v = ug. Thus u = ug f and
v = v f g, which implies g f = 1 and f g = 1 because u, v are monics.
Therefore f , g are isomorphisms.

Lemma 6.3.3. Pullbacks of monics are monics. Dually, pushforwards of
epis are epis.

Proof. Let the pullback of f , g as f ′, g′, respectively. Suppose that f
is monic8. Consider a parallel pair h, k satisfying f ′h = f ′k. Then
g f ′h = g f ′k, thus by commutativity, f g′h = f g′k. Since f is monic,
g′h = g′k. Thus, by the universality of pullback, h = k.

Definition 6.3.4. Let C be a complete category. Then for two
subobjects u, v, a subobject w given by the pullback of u, v is called
the intersection.

Definition 6.3.5. Let x : b → c for b, c ∈ C. Then we write x ∈ c,
calling x an element of a. We write x ≡ y for two x, y ∈ c if there
are epis u, v with xu = yv.

6.4
Abelian Category

Definition 6.4.1. Let C be an additive category. We say C is an
abelian category if:

1. every morphism in C admits a kernel and a cokernel;
2. every monomorphism is a kernel, and every epimorphism is a

cokernel.

Lemma 6.4.2. Let C be an abelian category with morphism f . Then the
followings hold.

Ker coKer Ker f = Ker f , coKer Ker coKer f = coKer f (6.9)



Abelian Category 55

Proof. Let Pc be the set of morphisms with codomain c, and Qc be
the set of morphisms with domain c. Then there is a preorder on Pc

saying g ≤ f if g = f g′ for some g′, and a preorder on Qc saying
u ≥ v if v = v′u for some v′.

Now, due to the universal properties of kernel and cokernel,

f ≤ Ker u⇔ u f = 0⇔ coKer f ≥ u. (6.10)

Thus (Ker, coKer) is a Galois connection, and from the triangular
identities, we get the followings.

Ker f ≥Ker coKer Ker f ≥ Ker f , (6.11)

coKer f ≤ coKer Ker coKer f ≤ coKer f (6.12)

By the Proposition 6.3.2, considering each kernels and cokernels as
objects, we get the desired result.

Proposition 6.4.3. Let C be an abelian category. Then m is monic
if and only if Ker coKer m = m. Dually, e is epi if and only if
coKer Ker e = e.

Proof. Let m be a monomorphism. Because m is a morphism of
abelian cataegory, m = Ker f for some f . Thus by Lemma 6.4.2,
Ker coKer Ker f = Ker f implies Ker coKer m = m. Conversely, let
Ker coKer m = m. Because m is a kernel, m is monic.

Lemma 6.4.4. The pullback of epi in an abelian category is epi. Dually,
the pushout of monic in an abelian category is monic.

Proof. Let the pullback of epis f : b → c,g : d → c be f ′, g′. Now
consider the following sequence.

s m−→ b⊕ d
f p1−gp2−−−−−→ c (6.13)

Here m is a kernel of f p1 − gp2, and p1, p2 are projections of b⊕ d.
Then we may let f ′ = p2m and g′ = p1m.

Suppose that h( f p1 − gp2) = 0. Then using the injection i1, we
get

0 = h( f p1 − gp2)i1 = h f (6.14)

but since f is epi, h = 0. Thus f p1 − gp2 is an epi, and thus by
Proposition 6.4.3, coKer m = f p1 − gp2. Now let u f ′ = 0 for some u.
Then up2m = 0, and thus up2 factors through coKer m = f p1 − gp2,
as up2 = u′( f p1 − gp2). Thus,

0 = up2i1 = u′( f p1 − gp2)i1 = u′ f (6.15)

but since f is epi, u′ = 0.
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Proposition 6.4.5. Let C be an abelian category and f is a morphism
in C. Then there is a factorization f = me with monic m and epic e.
Furthermore, if there is another factorization f ′ = m′e′ by some monic m′

and epic e′, and f ′g = h f , then there is a unique k satisfying e′g = ke and
m′k = hm.9 Hence, a factorization of f is unique up to isomorphism.

For a factorization f = me, we may take

m = Im f := Ker(coKer f ), e = coIm f := coKer(Ker f ). (6.16)

Proof. f (Ker f ) = 0 implies ∃!u with ue = f , and (coKer f ) f = 0
implies ∃!v with mv = f . Now mv(Ker f ) = 0 implies v(Ker f ) = 0,
which implies ∃!g with ge = v, and (coKer f )ue = 0 implies
(coKer f )u = 0, which implies ∃!h with mh = u. Hence in total,
mge = f = mhe. Now m(g− h)e = 0 implies g = h.

To show that g is monic, suppose that ga = 0. Then we may
take a pullback of e and a, satisfying ei = aj. Since f i = mgei =

mgaj = 0, i factors as i = (Ker f )t, thus aj = e(Ker f )t. But since
e(Ker f ) = 0, aj = 0, and since j is the pullback of epimorphism e, j
is epi, therefore a = 0.

To show that h is epi, suppose that bh = 0. Then we may take
a pushout of m and b, satisfying km = lb. Since k f = kmhe =

lbhe = 0, k factors as k = s(coKer f ), thus lb = s(coKer f )m.
But since (coKer f )m = 0, lb = 0, and since l is the pushout of
monomorphism m, l is monic, therefore b = 0.10

6.5
Exact Sequence

Definition 6.5.1. Consider following pair of morphisms in an
Abelian category.

· f−→ b
g−→ · (6.17)

Then this sequence is exact when Im f ≡ Ker g, where the equiva-
lence comes from the subobjects of b.

If the following diagram is exact everywhere,

0→ a
f−→ b

g−→ c→ 0 (6.18)

where 0 is the zero object, we call it a short exact sequence.
If the following diagram is exact everywhere,

a
f−→ b

g−→ c→ 0 (6.19)

we call it a short right exact sequence.
If the following diagram is exact everywhere,

0→ a
f−→ b

g−→ c (6.20)

we call it a short left exact sequence.
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11 In other words, ( f , g) is exact if and
only if the composition g f is a zero
map and every element killed by g is
in the image of f .

Proposition 6.5.2. Im f ≤ Ker g if and only if g f = 0. Also,
Im f ≥ Ker g if and only if every k with gk = 0 factors as k = mk′ for the
monic-epi factorization f = me.11

Proof.

Definition 6.5.3. Let C be a category with finite limits. Then a
functor F : C→ D is left exact if it commutes with finite limits.

Dually, let C be a category with finite colimits. Then a functor
F : C→ D is right exact if it commutes with finite colimits.

If a functor F is both left and right exact, we call it exact functor.

Proposition 6.5.4. Let C be an abelian category and F is an additive
functor. Then the followings are equivalent.

1. F is left exact.
2. Whenever 0 → A → B → C → 0 is exact in C, 0 → F(A) →

F(B)→ F(C) is exact.
3. Whenever 0 → A → B → C is exact in C, 0 → F(A) → F(B) →

F(C) is exact.

Also the followings are equivalent.

1. F is right exact.
2. Whenever 0 → A → B → C → 0 is exact in C, F(A) → F(B) →

F(C)→ 0 is exact.
3. Whenever A → B → C → 0 is exact in C, F(A) → F(B) → F(C) →

0 is exact.

Proof.

Definition 6.5.5. Let 0 → A
f−→ B

g−→ C → 0 be a short exact
sequence in an abelian category C. If there is h : C → B and k : B →
A such that 1B = f k + hg, then we call the sequence splits.

Proposition 6.5.6. For a short exact sequence 0→ A
f−→ B

g−→ C → 0
in an abelian category C, the followings are equivalent.

1. The short exact sequence splits.
2. There is h : C → B such that gh = 1C.
3. There is k : B→ A such that k f = 1A.
4. There are (k, g) : B → A ⊕ C and ( f , h) : A ⊕ C → B which are

isomorphisms to each other.
5. f is a split monomorphism.
6. g is a split epimorphism.

Proof.

(1⇒ 2). Let 1B = f k + hg. Because g f = 0, g = g f k + ghg = ghg,
thus (gh− 1C)g = 0. Since g is epi, gh = 1C.
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(2⇒ 1). Let gh = 1C. Because g = ghg, we have g(1B − hg) = 0.
Thus 1B − hg can be factorized by k : B → A, that is, 1B − hg =

f k.
(2⇔ 3). This proof is basically the dual of above.
(1⇔ 4). This follows naturally from aboves.
(1⇔ 5, 6). This follows naturally from the Theorem 1.3.12.

Definition 6.5.7. An abelian category is called semisimple if all
short exact sequences split.

6.6
Diagram Chasing

Lemma 6.6.1. The relation x ≡ y of two elements in Abelian category
are transitive, hence an equivalence relation. That is, x ≡ y and y ≡ z
implies x ≡ z.

Proof. Let x ≡ y and y ≡ z, that is, there are epis u, v, w, r with
xu = yv and yw = zr.12 Then we may take a pullback of w and r,
say w′ and r′. By Lemma 6.4.4, w′, r′ are epis, thus uw′ and rv′ are
epis, saying x ≡ z.

Theorem 6.6.2 (Rules of diagram chasing). In abelian category,
the followings hold.

1. (Monomorphism 1) f : a → b is monic if and only if f x ≡ 0 implies
x ≡ 0 for all x ∈ a.

2. (Monomorphism 2) f : a → b is monic if and only if f x ≡ f x′ implies
x ≡ x′ for all x, x′ ∈ a.

3. (Epimorphism) g : b → c is epi if and only if there is a y ∈ b with
gy ≡ z for all z ∈ c.

4. (Zero morphism) h : r → s is the zero arrow if and only if hx ≡ 0 for
all x ∈ r.

5. (Exact sequence) A sequence a
f−→ b

g−→ c is exact at b if and only if
g f = 0 and for every y ∈ b with gy ≡ 0 there is x ∈ a with f x ≡ y.

6. (Substraction) Let g : b → c and x, y ∈ b with gx ≡ gy. Then there
is an element z ∈ b with gz ≡ 0. Furthermore, any f : b → d with
f x ≡ 0 has f y ≡ f z and any h : b→ a ≡ 0 has hx ≡ −hz.

6.7
Snake, Five, and Nine lemma

Lemma 6.7.1 (Snake lemma).
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Lemma 6.7.2 (Five lemma).

Lemma 6.7.3 (Nine lemma).

6.8
Injective and Projective Objects

Definition 6.8.1. Let C be a category. A set S of objects of the
category C generates C if for any parallel pair g, h : c → d, g 6= h
implies that there is an object s ∈ S and a morphism f : s → c such
that g f 6= h f .

Dually, a set Q of objects of the category C cogenerates C if for
any parallel pair g, h : c → d, g 6= h implies that there is an object
q ∈ Q and a morphism f : d→ q such that f g 6= f h.

Proposition 6.8.2. Let S be a subset of objects in C. Then the follow-
ings are equivalent.

1. S generates C.
2. For any c ∈ C, there is s ∈ S with an epimorphism s→ c.

Dually, the followings are equivalent.

1. Q cogenerates C.
2. For any c ∈ C, there is q ∈ Q with a monomorphism c→ q.

Proof. (1⇒ 2). Suppose not, that is, for all morphism f : s → c
with s ∈ S, f is not an epimorphism. This implies that there is
g, h : c→ d such that g f = h f for all f but g 6= h, coontradiction.

(2⇒ 1). Let g, h : c → d with g 6= h. By hypothesis, there is s ∈ S
with an epimorphism f : s → c. If g f = h f then since f is epi
g = h, contradiction, thus g f 6= h f .

Definition 6.8.3. Let C be an abelian category.

1. An object I in C is injective if the functor C(−, I) is exact.
2. Dually, an object P in C is projective if the functor C(P,−) is

exact.

Let {I} be the set of injective objects of C, and {P} be the set of
projective objects of C.

1. We call C has enough injectives if {I} cogenerates C.
2. We call C has enough projectives if {P} generates C.

Proposition 6.8.4. An object I ∈ C is injective if and only if, for any
subobject f : X → Y and a map k : X → I, there is a map h : Y → I with
k = h f .13

Dually, an object P ∈ C is projective if and only if, for any quotient
object q : X → Y and a map m : P → Y, there is a map h : P → X with
m = qh.
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Proof. Consider an exact sequence 0→ X
f−→ Y

coKer f−−−−→ Z → 0. Then
because C(−, I) is left exact, 0 → C(Z, I) → C(Y, I) → C(X, I) is
exact. Thus 0 → C(Z, I) → C(Y, I) → C(X, I) → 0 is exact if and
only if C(Y, I)→ C(X, I) is surjective.
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Chapter 7

Chain complex and Homology

Chain Lightning deals 3 damage to any target. Then that player or
that permanent’s controller may pay RR. If the player does, they
may copy this spell and may choose a new target for that copy.

— Chain Lightning, Magic: the gathering

7.1
Chain complex

Definition 7.1.1. A chain complex C• of an abelian category C is
a family {Cn}n∈Z of objects in C with maps dn : Cn → Cn−1, called
differentials, satisfying dn−1 ◦ dn = 0. We write the chain complex
as C•.

A chain map f• between chain complexes C• and D• is a family
{ fn}n∈Z of morphisms in C which satisfies fn−1dC

n = dn fn.
For two chain maps f• : C• → D• and g• : D• → E•, the

composition of chain maps (g f )• is defined as (g f )• = g• ◦ f•.
A chain complex category Ch(C), or simply Ch, is a category

with chain complexes as objects and chain maps as morphisms.

Lemma 7.1.2. Let f• be a chain map. Then it is monic if and only if
{ fn}n∈Z is a set of monomorphisms.

Dually, f• is epi if and only if { fn}n∈Z is a set of epimorphisms.

Proof. Suppose that f• is a chain map. For fn, suppose that gn fn =

hn fn for some composable morphisms gn, hn. Now consider the
chain complex, with everywhere zero morphisms and maps except
gn and hn.1 Because f• is monic, gn = hn.

Suppose that { fn}n∈Z is a set of monomorphisms. Suppose
that g•, h• are composable chain maps with g f• = h f•. Because
g f• = g• f• = h• f• = h f•, g• = h•.

Lemma 7.1.3. Let f• be a chain map. Then the kernel chain complex
(Ker f )• := Ker( f•) is a kernel of f•.

Dually, the cokernel chain complex (coKer f )• := coKer( f•) is a
cokernel of f•.
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3 The sign (−1)p is useful to simplify
further notations.

Proof. First, due to the kernel property, there exists a kernel chain
Ker f .2 To show that this is kernel, suppose that g f• = 0, that is,
g• f• = 0. Due to the kernel property, this can be factorized by
Ker f•, which indeed gives a chain map because the kernel map is
monic.

Proposition 7.1.4. Let C be an abelian category. Then the category
Ch(C) is an abelian category.

Proof. By the obvious definition of addition, ( f + g)• = f• + g•,
Ch(C) is a pre-additive category. Because the finite product

(
⊕iCi)

•
of chain complexes always exists as ⊕i

(
Ci
•
)
, and the zero object

exists, it is an additive category, by Proposition 6.2.2. Finally, by
Lemma 7.1.2 and 7.1.3, we get the desired result.

Definition 7.1.5. Let C• be a chain complex. For some integer
p, we define a translated chain complex C[p]• as a chain complex
with

C[p]n = Cn+p (7.1)

with differentials dC[p]
n = (−1)pdC

n+p.3

Corollary 7.1.6. Let C• be a chain complex. Then Hn−p(C[p]) '
Hn(C).

Proof. This follows naturally from the definition of translated chain
complex.

7.2
Homology

Definition 7.2.1. Let C• be a chain complex with differential d•.

1. The kernel of dn is called the module of n-cycle, often written as
Zn(C) or simply Zn.

2. The image of dn+1 is called the module of n-boundary, often
written as Bn(C) or simply Bn.

Proposition 7.2.2. There is a natural monomorphism Bn → Zn.

Proof. We may factorize dn+1 by mn+1en+1, with monic mn+1 and
epi en+1. Because dndn+1 = dnmn+1en+1 = 0, by epi property,
dnmn+1, and thus mn+1 factorizes by Ker dn. Because mn+1 and
Ker dn are monic and the domain of mn+1 is isomorphic to Im dn+1,
we get the desired monomorphism.
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Definition 7.2.3. Let C• be a chain complex with natural
monomorphisms Bn → Zn. Then the cokernel of this map, which
is a quotient object, is called a homology, often written as Hn(C) or
simply Hn.

If Hn(C) = 0 for all n ∈ Z, we call C• acyclic.

Proposition 7.2.4. For a chain map f• : C• → D•, there are natural
morphisms Bn(C) → Bn(D), Zn(C) → Zn(D), and thus Hn(C) →
Hn(D). Therefore, Bn, Zn, Hn : Ch(C) → C are additive functors for all
n ∈ Z.

Proof. Consider the decomposition of map Cn+1
dC

n+1−−→ Cn into

Cn+1
coKer Ker dC

n+1−−−−−−−−→ Bn(C)
mC

n−→ Zn(C)
Ker dC

n−−−→ Cn, and similar on D•.

Because 0 = Ker dC
n+1 → Cn+1 → Cn → Dn = Ker dC

n+1 → Cn+1
fn+1−−→

Dn+1 → Bn(D) → Zn(D) → Dn, and the last two maps are

monic, Ker dC
n+1 → Cn+1

fn+1−−→ Dn+1 → Bn(D) is a zero map. Thus

Cn+1
fn+1−−→ Dn+1 → Bn(D) can be factorized by coKer Ker dC

n+1,
giving a map Bn(C)→ Bn(D).

The kernel map Zn(C) → Zn(D), and cokernel map Hn(C) →
Hn(D), are induced naturally by the kernel property.

Definition 7.2.5. A chain map f• is called a quasi-isomorphism
if the maps Hn(C) → Hn(D) naturally induced by f• are isomor-
phisms.

Proposition 7.2.6. Let C• be a chain complex. Then the followings are
equivalent.

1. C• is exact.
2. C• is acyclic.
3. C• is quasi-isomorphic to 0•.

Proof.

(1⇔ 2.) Zn ' Bn if and only if Hn = 0 for all n ∈ Z.
(2⇔ 3.) 0• has zero homology modules.

7.3
Homology Long Exact Sequence

Lemma 7.3.1. Let C• be a chain complex. Then the followings are exact
sequences.

1. 0→ Bn(C)→ Zn(C)→ Hn(C)→ 0
2. 0→ Zn(C)→ Cn → Bn−1(C)→ 0
3. 0→ Hn(C)→ coKer(dn+1)→ Ker(dn−1)→ Hn−1(C)→ 0
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Proof.

1. Because Ker(Zn → Hn) = Ker coKer(Bn → Zn) = Im(Bn → Zn),
and Bn → Zn is monic and Zn → Hn is epi, the sequence is exact.

2. Because Ker(Cn → Bn−1) = Ker dn = Zn, we get the desired
result.

3. Because of the first statement, it is enough to show that 0 →
Hn(C) → coKer(dn+1) → Bn−1 → 0 is exact. Because of the
two above, we can build the following commutating diagram,
where all the horizontal rows are exact and the first two vertical
columns are exact. By the lemma 6.7.3, the last column is exact.

Bn Zn Hn

Bn Cn coKer dn+1

Bn Bn−1 Bn−1

1Bn

0

0 1Bn−1

(7.2)

Theorem 7.3.2. Let 0 → A•
f•−→ B•

g•−→ C → 0 be a short exact
sequences of chain complexes. Then there are natural maps ∂n : Hn(C) →
Hn−1(A) which makes the following sequence exact.

· · · g∗n−→ Hn+1(C)
∂n+1−−→ Hn(A)

f ∗n−→ Hn(B)
g∗n−→ Hn(C)

∂n−→ · · · (7.3)

Proof. Considering the exact sequences coKer dA
n → coKer dB

n →
coKer dC

n → 0 and 0 → Ker dA
n → Ker dB

n → Ker dC
n , and using

Lemma 6.7.1 and 7.3.1, we get the desired result.

7.4
Splitting Chain Complex

Definition 7.4.1. Let C• be a chain complex. We say C• splits if
there are morphisms sn : Cn → Cn+1 such that dn = dnsn−1dn.

Proposition 7.4.2. A chain complex C• splits if and only if the first
two short exact sequences in the Lemma 7.3.1 splits.

Proof. Suppose that C• splits, so there are morphisms sn : Cn →
Cn+1 with dn = dnsn−1dn. Choose the natural morphisms Cn+1 →
Bn(C) → Zn(C) → Cn, and by composing sn, choose the splitting
maps for each morphisms. Then Cn+1 → Bn → Zn → Cn

sn−→
Cn+1 → Bn → Zn → Cn = Cn+1 → Bn → Zn → Cn. Since Cn+1 → Bn

is epi and Bn → Zn → Cn are monic, Bn → Zn → Cn
sn−→ Cn+1 →

Bn = 1Bn . Hence the sequences split.
Conversely, suppose that the sequences split. Choose Cn → Zn →

Bn → Cn+1 as the splitting morphisms, and let the compositions as
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sn. Then, dnsn−1dn = Cn → Bn−1 → Zn−1 → Cn−1 → Zn−1 →
Bn−1 → Cn → Bn−1 → Zn−1 → Cn−1. Deleting all the identities only
give Cn → Bn−1 → Cn → Bn−1 → Cn−1, and deleting an identity
again gives Cn → Cn−1, which is the differential.

7.5
Mapping Cones and Mapping Cylinders

Definition 7.5.1. Let f• : C• → D•. The mapping cone of f is
the chain complex Cone( f )•, with Cone( f )n := Cn−1 ⊕ Dn and
dCone

n = (−dC
n−1 p1, dD

n p2 − fn p1).
For the identity map 1C• , we write Cone(1C•) as Cone(C).

Theorem 7.5.2. Let f• : C• → D• is a chain map. Then there is a
following short exact sequence of chain complexes.

0→ D• → Cone( f )→ C[−1]• → 0 (7.4)

Therefore there is a following homology long exact sequence.

· · · → Hn+1(Cone( f ))→ Hn(C)→ Hn(D)→ Hn(Cone( f ))→ · · ·
(7.5)

Here, Hn(C)→ Hn(D) is the map Hn( f ).

Proof.

Proposition 7.5.3. A chain map f• : C• → D• is a quasi-
isomorphism if and only if Cone( f ) is exact.

Proof. By the Theorem 7.5.2, f• is a quasi-isomorphism if and only
if, for all n, Hn(C)

∼−→ Hn(D) → Hn(Cone( f )) → Hn−1(C)
∼−→

Hn(D) is exact. This is equivalent to Ker(Hn(D) → Hn(Cone( f )) =
Hn(D) and Im(Hn(Cone( f ) → Hn−1(C)) = 0, thus if and only if
Hn(Cone( f )) = 0, for all n.

Proposition 7.5.4. Cone(C) is split exact.

Proof. Consider sn : Cone(C)n → Cone(C)n+1 defined as (−p2, 0).
Then dnsn−1dn = (−dC

n−1 p1, dC
n p2 − 1Cn p1)(−p2, 0)(−dC

n−1 p1, dC
n p2 −

1Cn p1) = (dD
n p2) = (−dC

n−1 p1, dC
n p2 − 1Cn p1)(1Cn p1 − dC

n p2, 0) =

(−dC
n−1 p1, dC

n p2 − 1Cn p1), showing that Cone(C) splits. Further-
more, because 1C• is a quasi-isomorphism, Cone(C) is exact by
Proposition 7.5.3.

7.6
Chain Homotopy
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Definition 7.6.1. A chain map f• : C• → D• is null homotopic
if there are morphisms sn : Cn → Dn+1 such that fn = dD

n+1sn +

sn−1dC
n .

For two chain maps f•, g• : C• → D•, if ( f − g)• is null homo-
topic, then we say f•, g• are chain homotopic.

For a chain map f• : C• → D•, if there is a chain map g• : D• →
C• where f g• and g f• are chain homotopic to the identity maps,
then we call f• a chain homotopy equivalence.

Proposition 7.6.2. A chain complex C• is split exact if and only if 1C•
is null homotopic.

Proof. Suppose that C• splits. Then we have a collection of mor-
phisms sn : Cn → Cn+1 satisfying dn = dnsn−1dn.

Lemma 7.6.3. A chain map f• : C• → D• is null homotopic if and only
if there exists a map (−s, f ) : Cone(C)→ D.

Theorem 7.6.4. Let f• : C• → D• be a chain map. Then f• is null
homotopic if and only if Hn( f ) : Hn(C) → Hn(D) are zero. Therefore,
f•, g• are chain homotopic if and only if Hn( f ) = Hn(g).

Proof. Suppose that f• is a null homotopic chain map. Due to the
Theorem 7.5.2,



Chapter 8

Group Homology and Cohomology

8.1
Definitions

Definition 8.1.1. Let G be a group. A G-module is an abelian
group A on which G acts by additive maps on the left.

The category ModG is a category whose objects are G-module
and morphisms are G-set maps.

A trivial G-module is a G-module A with ga = a for all g ∈
G, a ∈ A.

A trivial G-module functor is a functor T : ModZ → ModG,
taking an abelian group to a trivial G-module.

Definition 8.1.2. Let A be a G-module.

1. The invariant subgroup is a subgroup of A defined as following.

AG := {a ∈ A : ga = a, ∀(g, a) ∈ G× A} (8.1)

2. The coinvariants is an abelian group defined as following.

AG := A/G({(ga− a) : (g, a) ∈ G× A}) (8.2)

Proposition 8.1.3.

1. The map −G : ModG → ModZ is a functor.
2. The map −G : ModG → ModZ is a functor.

Proof.

1. Let f : A → B be a G-set map. To show that the map f G : AG →
BG is naturally induced, we need to show that ga = a implies
g f (a) = f (a). Because f is a G-set map, g f (a) = f (ga) = f (a).

2. Let f : A → B be a G-set map. To show that the map fG :
AG → BG is naturally induced, we need to show that ga− a ∈ A
becomes g′b− b = f (ga− a) ∈ B for some g′ ∈ G and a ∈ A.
Because f is a G-set map, f (ga− a) = g f (a)− f (a), thus g′ = g
and b = f (a) gives the desired result.
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Theorem 8.1.4.

1. The functor −G is right adjoint to the trivial module funtor, thus a left
exact functor.

2. The functor −G is left adjoint to the trivial module functor, thus a right
exact functor.

Proof.

1. What we need to show is that ModZ(AG, B) ' ModG(A, T(B))
for any G-module A and Z-module B. Take f : AG → B. The
extension of f to A → T(B) exists, by taking f (A \ AG) = 0.
Suppose that there is another map h : A → T(B) such that the
restriction h|AG → B is a zero map. Suppose that h(a) 6= 0 for
some a ∈ A. By assumption, ga− a 6= 0, thus h(ga) 6= h(a). But
due to the triviality, h(ga) = gh(a) = h(a), contradiction.

2. What we need to show is that ModG(T(A), B) ' ModZ(A, BG)

for any Z-module A and G-module B. Take f : T(A) → B. This
map naturally extends to A → BG, because g f (a) − f (a) =

f (ga)− f (a) = f (a− a) = 0, and this kind of extension is unique.

Lemma 8.1.5. Let A be a G-module and Z be a trivial G-module. Then
AG ' Z⊗G A and AG ' G(Z, A).

Proof. By considering Z as a Z− G bimodule, the trivial G-module
functor T can be written as Z(Z,−) whose left adjoint is Z ⊗G

−, as we can see on Proposition 5.3.1. Also, AG ' Z(Z, AG) '
G(Z, A) by adjointness in Theorem 8.1.4.

Definition 8.1.6. Let A be a G-module. Then we write

H∗(G; A) := L∗(−G)(A) ' TorG
∗ (Z, A) (8.3)

and call them the homology groups of G with coefficients in A.
Similarly, we write

H∗(G; A) := R∗(−G)(A) ' Ext∗G(Z, A) (8.4)

and call them the cohomology groups of G with coefficients in A.
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Chapter 9

The Derived Category

9.1
Triangulated Categories

Definition 9.1.1. A category with translation (C, T) is a cate-
gory C with an equivalence of categories T : C

∼−→ C, called the
translation functor.

For two categories with translations, a functor F : (C, T)→ (D, S)
of translation categories is a functor F : C→ D satisfying FT = SF.

For two functors F, G : (C, T) → (D, S), a natural transformation
ε : F → F′ of translation functors is a natural transformation which
makes FT εT−→ GT ∼−→ SG and FT ∼−→ SF Sε−→ SG same.1

Definition 9.1.2. Let (C, T) be an additive category with trans-

lation. A triangle in D is a sequence of morphisms X
f−→ Y

g−→
Z h−→ TX, and their morphism is a collection of maps X α−→ X′,

β : Y
β−→ Y′, and Z

γ−→ Z′, satisfying β f = f ′α, γg = g′β,
T(α)h = h′γ.2

Definition 9.1.3. A triangulated category is an additive category
(C, T) with a family of triangles, called distinguished triangles,
satisfying the followings.

1. A triangle isomorphic to a distinguished triangle is a distin-
guished triangle.

2. X
1X−→ X → 0→ TX is a distinguished triangle.

3. For all f : X → Y, there is a distinguished triangle X
f−→ Y →

Z → TX.
4. A triangle X

f−→ Y
g−→ Z h−→ TX is a distinguished triangle if and

only if Y
−g−→ Z −h−→ TX

−T( f )−−−→ TY is a distinguished triangle.

5. For two distinguished triangles X
f−→ Y

g−→ Z h−→ TX and

X′
f ′−→ Y

g′−→ Z h′−→ TX, and morphisms α : X → X′ and β : Y → Y′

satisfying f ′α = β f , there is a morphism γ : Z → Z′ which gives
a morphism between triangles.3
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4
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6. For three distinghished triangles,

X
f−→ Y h−→ Z′ → TX

Y
g−→ Z k−→ X′ → TY

X
g f−→ Z l−→ Y′ → TX

there is a distinguished triangle

Z′ u−→ Y′ v−→ X′ w−→ TZ′ (9.1)

making the diagram4, where the triangles are rows and the third
vertical triangle is the last given distinguished triangle, com-
mute.5

A triangulated functor of triangulated categories is a functor of
additive categories with translation, sending distinguished triangles
to distinguished triangles.

Proposition 9.1.4. X
f−→ Y

g−→ Z → TX is a distinguished triangle
implies g f = 0.

Proof. We have a distinguished triangle X
1X−→ X → 0 → TX, and

a map from it to our given triangle, constructed with X
1X−→ X and

X → f .6 This shows g f = 0 directly.

Definition 9.1.5. Let (C, T) be a triangulated category and D

be an abelian category. Then an additive functor F : C → D is
cohomological if for any distinguished triangles X → Y → Z → TX
in C the sequence F(X)→ F(Y)→ F(Z) is exact in D.

Proposition 9.1.6. For any C ∈ C, C(C,−) and C(−, C) are cohomo-
logical.

Proof. Let X → Y → Z → TX be a distinguished triangle. To show
that

C(C, X)
f∗−→ C(C, Y)

g∗−→ C(C, Z) (9.2)

is exact, we need to show that for all ϕ ∈ C(C, Y) with gϕ = 0,
there is ψ : C → X such that ϕ = f ψ. But from the two sequences

C
1C−→ C → 0 → TC and X

f−→ Y
g−→ Z → TX,by the conditions

of distinguished triangle, there is a map ψ : C → X which is
ϕ = f ψ7.

Proposition 9.1.7. For a cohomological functor F and a distinguished
triangle X → Y → Z → TX, there is a long exact sequence

· · · → F(T−1Z)→ F(X)→ F(Y)→ F(Z)→ F(TX)→ · · · . (9.3)
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8

C TC

D TD

dC

f T( f )
dD

Proof. This directly follows from the definition of cohomological
functor and distinguished triangle.

9.2
Complexes and Mapping cone

Definition 9.2.1. Let (C, T) be an additive category with transla-
tion.

1. A differential object is an object C ∈ C with a morphism dC :
C → TC.

2. A morphism of differentials is a differential morphism f : C →
D between complexes.

3. A differential object C is a complex if T(dC)dC = 0.
4. A morphism of complexes is a morphism f : C → D such that

T( f )dC = dD f .8

Definition 9.2.2. Let (C, T) be an additive category with trans-
lation. For a differential object C, the differential object TC with the
differential dTC := −T(dC) is called the shifted object of C.

Definition 9.2.3. Let (C, T) be an additive category with trans-
lation, and there are two differential objects C, D with a morphism
f : C → D. Then the mapping cone Cone( f ) is the object TC ⊕ D
with differential

dCone( f ) :=

[
dTC 0
T( f ) dD

]
. (9.4)

Define α( f ) : D → Cone( f ) as α( f ) := 0 ⊕ 1D and β( f ) :
Cone( f )→ TC as β( f ) = (1TX , 0). Then a triangle

C
f−→ D

α( f )−−→ Cone( f )
β( f )−−→ TC (9.5)

exists, and we call it a mapping cone triangle.

Proposition 9.2.4. Let (C, T) be an additive category with transla-
tion. For a complexes C, D with f : C → D, Cone( f ) is a complex if and
only if f is a morphism of complexes.

Proof. Because

T(dCone( f ))dCone( f ) =

[
T(dTC) 0
T2( f ) T(dD)

] [
dTC 0
T( f ) dD

]
, (9.6)

Cone( f ) is a complex if and only if

T(−T( f )dC + dD f ) = 0 (9.7)

which is equivalent with T( f )dC = dD f , that is, f is a morphism of
complexes.
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9.3
The Homotopy Category

Lemma 9.3.1. Let (C, T) be an additive category with translation, with
differential objects C, D and a morphism u : C → T−1D. Define

f := T(u)dC + T−1(dD)u. (9.8)

Then f is a differential morphism if and only if

dDT−1(dD)u = T2(u)T(dC)dC. (9.9)

Thus, if C and D are complexes, then f is a morphism of complexes.

Proof. This directly follows from the definition.

Definition 9.3.2. Let (C, T) be an additive category with trans-
lation, with two differential objects C, D. Then a differnetial mor-
phism f : C → D is zero homotopic if there is a morphism
u : C → T−1D with satisfying

f = T(u)dC + T−1(dD)u. (9.10)

We say two differential morphisms f , g : C → D are homotopic
equivalent or homotopic if f − g is zero homotopic.

Proposition 9.3.3. Let f : C → D and g : D → E be differential
objects. If f or g is zero homotopic, then g f is zero homotopic.

Proof. Let f = T(u)dC + T−1(dD)u with u : C → T−1D. Then,

g f = gT(u)dC + gT−1(dD)u

= gT−1(u)dC + T−1(dE)T−1(g)u

= T(T−1(g)u)dC + T−1(dE)(T−1(g)u).

This shows the desired result. The g zero homotopic case is similar.

Definition 9.3.4. Let (C, T) be an additive category with transla-
tion. Then the homotopy category Kd(C) is a category with objects
as differential objects, and morphisms as differential morphisms
quotiented by homotopy equivalence.

Proposition 9.3.5. Let (C, T) be an additive category with transla-
tion. Then (Kd(C), T) is also an additive category with translation.

Proof. The quotient of abelian group is an abelian group, hence the
morphism set is an abelian group. Also, the translation functor on C

naturally induces the translation functor on Kd(C).
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9 Kc(C) is triangulated because the
mapping cone of a complex morphism
is a complex.

Theorem 9.3.6. Defining a set of distinguished triangles of (Kd(C), T)
as the set of triangles isomorphic to a mapping cone triangle gives a trian-
gulated category.

Proof.

Definition 9.3.7. Let Kd(C) be a homotopy category. Then the
chain homotopy category Kc(C) is a triangulated full subcategory
of Kd(C) consisting of complexes in (C, T), with induced family of
distinguished triangles.9

Proposition 9.3.8. Let F : (C, T) → (D, S) be a functor of additive
categories with translation. Then F defines naturally triangulated functors
Kd(F) : Kd(C)→ Kd(D) and Kc(F) : Kc(C)→ Kc(D).

Proof. Because F sends a zero homotopic morphism to a zero ho-
motopic morphism, we only need to show that F sends a mapping
cone triangle to mapping cone triangle, which follows from the
definition of mapping cone triangle.
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Epi, 10
Equalizer, 41
ETAC, see Elementary theory of an abstract

category
Exact functor, 57
Exact sequence, 56

Functor, 13
Adjoint, 45

Conservative, 15

Constant, 23

Continuous, 43

Contravariant, 14, 21

Covariant, 14, 21

Diagonal, 39

Embedding, 15
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Faithful, 15
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Full, 15
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Fully faithful, 15
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Maximal, 26

Hom-functor
Contravariant, 23

Covariant, 23

Homology, 65
Homotopic, 76

Homotopy category, 76

Inductive system, 37

Injective object, 59
Intersection, 54
Invariant subgroup, 69
Inverse

Left, see Split Epimorphism
Right, see Split Monomorphism

Inverse limit, 41
Isomorphic, 9

Limit, 39
Inductive, 38

Projective, 37, 38
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Finite, 38

Small, 38

Mapping cone, 67, 75
Metacategory, 7
Metagraph, 7
Monic, 10
Morphism, 8

Adjunction, 46

Automorphism, 9

Coconstant, 24

Constant, 24

Endomorphism, 9

Epimorphism, 10

Inverse, 9

Isomorphism, 9

Left zero, see Constant morphism
Monomorphism, 10

Right zero, see Coconstant morphism
Universal, 31

Zero, 24

Natural transformation, 17
Null homotopic, 68

Object, 7
Final, 23

Initial, 23

Representating, 32

Zero, 23

Presheaf, 14
Product, 29, 40
Projection, 29

Projective object, 59
Projective system, 37

Pullback, 41
Pushout, 41

Quasi-inverse, 18
Quasi-isomorphism, 65
Quotient object, 54

Representation
Functor, 32

Object, 32

Retraction, see Split epimorphism
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Section, see Split monomorphism
Sheaf, 14
Short exact sequence, 56
Short left exact sequence, 56
Short right exact sequence, 56
Small, 8

Category, 9

Split
Epimorphism, 12

Exact sequence, 57
Monomorphism, 12

Splits
Chain complex, 66

Statement, 20
Subobject, 54

Translation, 73
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Triangulated category, 73
Triangulated functor, 74

Universal
Element, 32

Morphism, 31

Universe, 8

Yoneda Functor, 34
Yoneda Lemma, 33
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